
Secure Bootloader Guide

M-20892-003
September 2023

© SCILLC, 2023
Previous Edition © 2022

onsemi

onsemi

Secure Bootloader Guide

Table of Contents
Page

Secure Bootloader Guide 1

Table of Contents 2

1. Introduction 9

1.1 Summary 9

1.2 Document Conventions 9

1.3 Further Reading 10

2. Overview 12

2.1 Common Features 12

2.2 RSL15 Secure Bootloader Usage Options 15

2.2.1 Functionality Access Options 15

2.2.2 Configuration 15

2.3 Memory Partitioning Overview 15

3. PSA Compliance Background 18

3.1 Overview of PSA Compliance 18

4. Basic Bootloader 20

4.1 General Usage 20

5. Secure Bootloader 23

5.1 Booting a Secure Application 23

5.2 Updating a Secure Application 23

5.3 Updating the Secure Bootloader Itself 25

5.4 Support for Immutable Portions in the Secure Bootloader 26

6. Secure Storage 27

6.1 Secure Storage Area 27

6.2 Content to be Stored in Secure Storage 27

www.onsemi.com

2

onsemi

Secure Bootloader Guide

6.3 API 27

6.4 Basic Operation 27

7. Attestation 29

7.1 Overview and Background 29

7.2 Attestation Interface 29

7.2.1 Key Injection 29

7.2.2 Get Token 30

7.2.3 Get Token Size 30

7.2.4 Key Injection Process 30

7.3 Attestation Token 32

7.3.1 Format of Token 32

7.3.2 EAT Additional Details 33

7.3.3 Attestation Token Request 33

8. Secure Bootloader Sample Reference 35

8.1 Summary 35

8.2 Detailed Description 38

8.3 Secure Bootloader Sample Reference Typedef Documentation 38

8.3.1 BL_FCS_t 39

8.3.2 BL_BootAppId_t 39

8.4 Secure Bootloader Sample Reference Variable Documentation 39

8.4.1 BL_ImageWorkspace 39

8.5 Secure Bootloader Sample Reference Enumeration Type Documentation 39

8.5.1 BL_UpdateType_t 39

8.5.2 BL_ConfigStatus_t 40

8.5.3 BL_FCSStatus_t 40

8.5.4 BL_FCSAlgorithm_t 41

www.onsemi.com

3

onsemi

Secure Bootloader Guide

8.5.5 BL_ImageType_t 41

8.5.6 BL_ImageStatus_t 42

8.5.7 BL_LoaderCommand_t 42

8.5.8 BL_LoaderStatus_t 43

8.5.9 BL_LoaderCertType_t 44

8.5.10 BL_LoaderStatusType_t 44

8.5.11 BL_UARTStatus_t 44

8.6 Secure Bootloader Sample Reference Macro Definition Documentation 45

8.6.1 VT_OFFSET_STACK_POINTER 45

8.6.2 VT_OFFSET_RESET_VECTOR 45

8.6.3 VT_OFFSET_VERSION_INFO 46

8.6.4 VT_OFFSET_IMAGE_SIZE 46

8.6.5 VT_OFFSET_CERT_SIZE 46

8.6.6 BL_CONFIGURATION_BASE 46

8.6.7 BL_CONFIGURATION_WORDS 47

8.6.8 FLASH_BOND_INFO_SIZE 47

8.6.9 BL_CODE_SECTOR_SIZE 47

8.6.10 BL_DATA_SECTOR_SIZE 47

8.6.11 BL_FLASH_RESERVED_SIZE 47

8.6.12 BL_SECURE_STORAGE_BASE 48

8.6.13 BL_SECURE_STORAGE_SIZE 48

8.6.14 BL_SECURE_STORAGE_TOP 48

8.6.15 BL_BOOTLOADER_BASE 48

8.6.16 BL_BOOTLOADER_KB 49

8.6.17 BL_BOOTLOADER_SIZE 49

8.6.18 BL_FLASH_CODE_BASE 49

www.onsemi.com

4

onsemi

Secure Bootloader Guide

8.6.19 BL_FLASH_DATA_BASE 49

8.6.20 BL_FLASH_CODE_TOP 49

8.6.21 BL_FLASH_DATA_TOP 50

8.6.22 BL_FLASH_CODE_SIZE 50

8.6.23 BL_FLASH_DATA_SIZE 50

8.6.24 BL_APPLICATION_BASE 50

8.6.25 BL_AVAILABLE_SIZE 50

8.6.26 BL_APPLICATION_SIZE 51

8.6.27 BL_DOWNLOAD_BASE 51

8.6.28 BL_DOWNLOAD_SIZE 51

8.6.29 BL_OPT_FEATURE_ENABLED 51

8.6.30 BL_OPT_FEATURE_DISABLED 52

8.6.31 BL_OPT_FEATURE_BOOTLOADER 52

8.6.32 BL_OPT_FEATURE_SECURE_BOOTLOADER 52

8.6.33 BL_OPT_FEATURE_SECURE_STORAGE 52

8.6.34 BL_OPT_FEATURE_ATTESTATION 52

8.6.35 BL_OPT_ATTEST_KEY_AES 53

8.6.36 BL_OPT_ATTEST_KEY_RSA 53

8.6.37 BL_OPT_ATTEST_KEY_ECC 53

8.6.38 BL_OPT_SECURE_FILE_SYSTEM_RESET 53

8.6.39 DEBUG_CATCH_GPIO 53

8.6.40 UART_CLK 54

8.6.41 SENSOR_CLK 54

8.6.42 USER_CLK 54

8.6.43 VCC_BUCK_ENABLE 54

8.6.44 BL_TICKER_TIME_MS 55

www.onsemi.com

5

onsemi

Secure Bootloader Guide

8.6.45 BL_DEBUG 55

8.6.46 BL_TRACE 55

8.6.47 BL_WARNING 55

8.6.48 BL_ERROR 55

8.6.49 BL_UART_RX_TIMEOUT_MS 56

8.6.50 BL_WATCHDOG_FEED_ME_MS 56

8.6.51 BL_UART_TX_TIMEOUT_MS 56

8.6.52 BL_UART_MAX_RX_LENGTH 56

8.6.53 BL_UART_MAX_TX_LENGTH 56

8.6.54 BL_BAUD_RATE 57

8.6.55 BL_UART_DELAY_CYCLES 57

8.6.56 UPDATE_GPIO 57

8.6.57 MIN 57

8.6.58 MAX 57

8.6.59 BITS2BYTES 58

8.6.60 BITS2HALFWORDS 58

8.6.61 BL_VERSION_ENCODE 58

8.6.62 BL_VERSION_DECODE 58

8.6.63 BL_BOOT_VERSION 59

8.6.64 BL_WATCHDOG_MAX_HOLD_OFF_SECONDS 59

8.7 Secure Bootloader Sample Reference Function Documentation 59

8.7.1 BL_CheckRemapAddressSpace 59

8.7.2 BL_CheckGetApplicationSize 60

8.7.3 BL_CheckRelocatedApplicationSize 60

8.7.4 BL_CheckIfImageUpdateAvailable 61

8.7.5 BL_CheckIfSecureImageUpdateAvailable 61

www.onsemi.com

6

onsemi

Secure Bootloader Guide

8.7.6 BL_CheckFindSecondaryImageLocation 62

8.7.7 BL_ConfigIsValid 62

8.7.8 BL_ConfigCertificateAddress 63

8.7.9 BL_FCSInitialize 63

8.7.10 BL_FCSQuery 64

8.7.11 BL_FCSAuthenticationRequired 64

8.7.12 BL_FCSSelect 65

8.7.13 BL_FCSCheck 65

8.7.14 BL_FCSCalculate 66

8.7.15 BL_FCSAccumulateCRC 66

8.7.16 BL_FlashInitialize 67

8.7.17 BL_FlashSaveSector 67

8.7.18 BL_ImageInitialize 68

8.7.19 BL_ImageAddress 68

8.7.20 BL_ImageAddressRange 69

8.7.21 BL_ImageCopyMemoryRange 69

8.7.22 BL_ImageSaveBlock 70

8.7.23 BL_ImageVerify 70

8.7.24 BL_ImageAuthenticate 70

8.7.25 BL_ImageAuthenticateCurrent 71

8.7.26 BL_ImageIsValid 71

8.7.27 BL_ImageSaveAddress 72

8.7.28 BL_ImageStartApplication 73

8.7.29 BL_LoaderPerformFirmwareLoad 73

8.7.30 BL_LoaderCertificateAddress 73

8.7.31 BL_RecoveryInitialize 74

www.onsemi.com

7

onsemi

Secure Bootloader Guide

8.7.32 BL_TargetInitialize 74

8.7.33 BL_TargetReset 74

8.7.34 BL_TickerInitialize 74

8.7.35 BL_TickerTime 74

8.7.36 SysTick_Handler 75

8.7.37 BL_TraceInitialize 75

8.7.38 BL_UARTInitialize 75

8.7.39 BL_UARTReceiveAsync 75

8.7.40 BL_UARTReceiveComplete 76

8.7.41 BL_UARTReceive 77

8.7.42 BL_UARTSendAsync 78

8.7.43 BL_UARTSendComplete 79

8.7.44 BL_UARTSend 79

8.7.45 BL_UpdateInitialize 80

8.7.46 BL_UpdateRequested 80

8.7.47 BL_UpdateProcessPendingImages 80

8.7.48 BL_ImageSelectAndStartApplication 81

8.7.49 BL_VersionsGetInformation 81

8.7.50 BL_VersionsGetHello 81

8.7.51 BL_WatchdogInitialize 82

8.7.52 BL_WatchdogSetHoldTime 82

8.7.53 WATCHDOG_IRQHandler 82

www.onsemi.com

8

1.Introduction
1.1 SUMMARY

IMPORTANT: onsemi plans to lead in replacing the terms “white list", "master" and "slave” as noted in this
product release. We have a plan to work with other companies to identify an industry wide solution that can
eradicate non-inclusive terminology but maintains the technical relationship of the original wording. Once new
terminologies are agreed upon, we will update all documentation live on the website and in all future released
documents.

This group of topics describes the functionality and usage of the secure bootloader with RSL15, along with
Platform Security Architecture (PSA) compliance, secure storage, and attestation. RSL15 includes a secure bootloader
sample application which can be used by developers to acquire familiarity with the secure bootloader.

1.2 DOCUMENT CONVENTIONS

The following typographical conventions are used in this documentation:

monospace font
Assembly code, macros, functions, registers, defines and addresses.

italics
File and path names, or any portion of them.

<angle brackets and bold>
Optional parameters and placeholders for specific information. To use an optional parameter or
replace a placeholder, specify the information within the brackets; do not include the brackets
themselves.

Bold
GUI items (text that can be seen on a screen).

Note, Important, Caution, Warning

Information requiring special notice is presented in several attention-grabbing formats depending on the
consequences of ignoring the information:

NOTE: Significant supplemental information, hints, or tips.

IMPORTANT: Information that is more significant than a Note; intended to help you avoid frustration.

CAUTION: Information that can prevent you from damaging equipment or software.

WARNING: Information that can prevent harm to humans.

onsemi

CHAPTER 1

www.onsemi.com

9

onsemi

Secure Bootloader Guide

Registers:

Registers are shown in monospace font using their full descriptors, depending on which core the register is
accessing. The full description takes the form <PREFIX><GROUP>_<REGISTER>.

All registers are accessible from the Arm Cortex-M33 processor.

A register prefix of D_ is used in the following circumstances:

• In cases where there are multiple instances of a block of registers, the summary of the registers at the beginning
of the Register section have slightly different names from the detailed register sections below that table. For
example, the DMA*_CFG0 registers are referred to as DMA_CFG0 when we are defining bit-fields and settings.

The firmware provides access to these registers in two ways:

• In the flat header files (e.g.: sk5_hw_flat_cid*.h), each register is individually accessible by directly using the
naming provided in this manual. This is helpful for assembly and low-level C programming.

• In the normal header files (e.g.: sk5_hw_cid*.h), each register group forms a structure, with the registers being
defined as members within that structure. The structures defined by these header files provide access to registers
under the naming conventions PREFIX_GROUP->REGISTER (for the structure) and GROUP->REGISTER (for the
register).

• For more information, see the Hardware Definitions chapter of the Montana Firmware Reference.

Default settings for registers and bit fields are marked with an asterisk (*).

Any undefined bits must be written to 0, if they are written at all.

Numbers

In general, numbers are presented in decimal notation. In cases where hexadecimal or binary notation is more
convenient, these numbers are identified by the prefixes "0x" and "0b" respectively. For example, the decimal number
123456 can also be represented as 0x1E240 or 0b11110001001000000.

Sample Rates

All sample rates specified are the final decimated sample rates, unless stated otherwise.

1.3 FURTHER READING

The following documents are installed with the RSL15 system, in the default location C:/Users/<your_user_
name>/AppData/Local/Arm/Packs/ONSemiconductor/RSL15/<version_number>/documentation. These manuals are
available only in PDF format:

• Arm TrustZone CryptoCell-312 Software Developers Manual
• multiple CEVA manuals in the /ceva folder
For even more information, consult these publicly-available documents:

• Armv8M Architecture Reference Manual (PDF download available from
https://developer.arm.com/documentation/ddi0553/latest).

• Arm Cortex-M33 Processor Technical Reference Manual, revision r1p0, from
https://developer.arm.com/documentation/100230/0100

• Bluetooth Core Specification version 5.2, available from
https://www.bluetooth.com/specifications/adopted-specifications

www.onsemi.com

10

https://developer.arm.com/documentation/ddi0553/latest
https://developer.arm.com/documentation/100230/0100
https://www.bluetooth.com/specifications/adopted-specifications

onsemi

Secure Bootloader Guide

• TrustZone documentation available from the Arm website at
https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-cortex-m

• Other ArmCortex-M33 publications, available from the Arm website at
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m33

For information about the Evaluation and Development Board Manual and its schematics, go to the RSL15 web
page and navigate to the EVB page.

www.onsemi.com

11

https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-cortex-m
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m33
https://www.onsemi.com/rsl15
https://www.onsemi.com/rsl15

2.Overview
The secure bootloader for RSL15 is a reference application, called secure_bootloader, which can be used to

develop an end product bootloader that operates in a secure manner. The application has the following four modes
providing increasing levels of secure operation, available as needed depending on the end product's use cases:

1. Basic bootloader (non-secure)
2. Secure bootloader (maintains authenticated Root of Trust set up by the ROM)
3. Secure bootloader with secure storage
4. Secure bootloader with secure storage and device attestation

More detailed information about these four modes is found in Chapter 1 "RSL15 Secure Bootloader Usage
Options" on page 1.

2.1 COMMON FEATURES

The four modes of operation build on each other, with available features in one also being available for the next
level. For example, all secure bootloader functionality is still available when using the secure storage mode of
operation. This is indicated in the "Bootloader Options" figure (Figure 1).

onsemi

CHAPTER 2

www.onsemi.com

12

../../../../../Content/secure_bootloader/sboot_BootUsageOpt_LP.htm
../../../../../Content/secure_bootloader/sboot_BootUsageOpt_LP.htm

onsemi

Secure Bootloader Guide

Figure 1. Bootloader Options

The bootloader divides the main flash memory into two areas: the app download area and the app execution area.
This division provides a starting point for users who want to use the bootloader for firmware update purposes.

www.onsemi.com

13

onsemi

Secure Bootloader Guide

The bootloader application is the first application entry point after reset. It is located at the base address of the main
flash (0x00100000).

Upon start, the bootloader checks the app download area for a valid boot image. This application can be a regular
application, or a new bootloader. If there is one, the bootloader copies/overwrites this image into the app execution
area, invalidates the data in the download area, and boots this new image. If no valid boot image is found in the
download area, the bootloader verifies and boots from the app execution area. If no valid image is found in either area,
the bootloader defaults to a mode where the UART can be used to provide updates or perform attestation queries. It
prints an error message in the RTT Viewer. Sequence diagrams in Chapter 4 "Basic Bootloader" on page 20, Chapter 5
"Secure Bootloader" on page 23, and Chapter 7 "Attestation" on page 29 show detailed step-by-step procedures.

A valid boot image consists of a binary file generated from a .hex file. The .hex file is created by building the
project as usual, but with certain requirements. A valid boot image for an application must have its .text section starting
at the base address of the app execution area, instead of at the base address of the main flash. Therefore, making a
typical sample application—for example, blinky—compatible with the bootloader requires modifications to the linker
script (sections.ld) and startup code (startup.S). An example version of blinky is provided along with the secure
bootloader, in a utilities subfolder. The sections.ld file must include the correct start locations and sizes for the sections
of flash, and the startup.S must include the appropriate update to the IVT (ISR Vector Table) for the image descriptor.

IMPORTANT: For proper operation, the defined app excution area and the application’s IVT must be
aligned to a 512-byte boundary.

Updating the firmware image, as well as basic attestation operations, can be accomplished using the RSLUpdate
utility, packaged along with the RSLSec security tools. Examples of how to use RSLUpdate are included in the readme
file of the secure_bootloader sample application. More information about the secure operation and updating process is
described in Section 5 “Secure Bootloader” on page 23.

When GPIO14 is tied to ground, the device enters the bootloader state, expecting updates via the UART.

When GPIO14 it is not tied to ground, and an update is pending, the device tries to process the update and reset;
the bootloader tries to execute an application if one if available; and if no application is available, the device goes into
the bootloader state.

www.onsemi.com

14

onsemi

Secure Bootloader Guide

2.2 RSL15 SECURE BOOTLOADER USAGE OPTIONS

2.2.1 Functionality Access Options

The RSL15 secure bootloader sample application includes the following options for accessing increasing levels of
functionality depending on the end product needs:

1. Basic bootloader functionality
2. Secure bootloader with support for providing authenticated and validated loading of applications in addition to

the bootloader itself
l Authenticated transport layer
l Authenticated images verified on load
l Authenticated images verified again prior to overwriting an existing image
l Authenticated images booted by the bootloader

3. Secure storage
l A limited area of flash memory that is allocated as secure storage
l Enables the storage and retrieval of encrypted assets
l Simple filing system that also provides storage for general secure storage in addition to asset storage

4. Attestation
l Support for the injection or creation of attestation keys
l Attestation keys are stored in secure storage.
l A public key can be requested from application code using the bootloader interface.
l Support for an attestation token, which enumerates the hardware and firmware on the device
l Support for a standard attestation protocol that is robust against replay attacks
l Optional support for different types of attestation keys:

i. AES (not recommended due to lower level of security, and not available in the initial release)
ii. RSA (provides the smallest increase in bootloader image size, as RSA is already being included

in secure boot features)
iii. ECC (provides good balance between small keys, is robust against attack, requires the most

application code to support, and is not available in the initial release)

2.2.2 Configuration

The options are provided as preprocessor definitions, and are available in the API file bl_options.h.

2.3 MEMORY PARTITIONING OVERVIEW

Depending on the feature set used by the bootloader, the amount of flash memory it occupies can change. This
allows a bootloader with a lower feature set to be used in cases where, for instance, the Root of Trust or secure storage
is not required. When a reduced feature set bootloader is used, the memory partitioning can be changed, allowing for
larger user applications to be loaded.

For illustrative purposes, the "Build Configuration Memory Sizes" table (Table 1) shows the expected sizes of each
optional build configuration, with expected allocations of memory for application and download areas depending on
build options. The precise values are subject to change depending on the actual optimization levels and feature sets you
select, but this provides some guideline figures to help you decide which configuration to use.

www.onsemi.com

15

onsemi

Secure Bootloader Guide

Bootloader Secure Storage Application Download
Start
Address

Size
(KB)

Start
Address

Size
(KB)

Start
Address

Size
(KB)

Start
Address

Size
(KB)

Debug
Basic
Bootloader

0x100000 24 0 0 0x106000 236 0x141000 236

Secure
Bootloader

0x100000 52 0 0 0x10D000 224 0x145000 224

Secure Storage 0x100000 64 0x15A400 11 0x110000 212 0x145000 212
Attestation 0x100000 108 0x15A400 11 0x11B000 192 0x14B000 192

Release
Basic
Bootloader

0x100000 16 0 0 0x104000 240 0x140000 240

Secure
Bootloader

0x100000 44 0 0 0x10B000 228 0x144000 228

Secure Storage 0x100000 52 0x15A400 11 0x10D000 220 0x144000 220
Attestation 0x100000 92 0x15A400 11 0x117000 200 0x149000 200

Table 1. Build Configuration Memory Sizes

Derivation of these start addresses and sizes is available in bl_memory.h; this information is output to the RTT
Viewer when debugging the secure bootloader in the onsemi IDE with the RTT Viewer connected. This is also shown
in the "Memory Map Diagram" figure (Figure 2).

NOTE: There are variations for an RSL15 device with 284 KB of flash rather than 512 KB.

www.onsemi.com

16

onsemi

Secure Bootloader Guide

Figure 2. Memory Map Diagram

www.onsemi.com

17

3.PSA Compliance Background
The RSL15 secure bootloader is a reference implementation that can be used with associated guidelines to achieve

a product that is compliant with Platform Security Architecture (PSA). The RSL15 secure bootloader sample
application can be adapted as needed and incorporated into an overall firmware solution. See
https://www.psacertified.org/ for the full background on the PSA certification requirements and components. An
overview and the specific implementation details for RSL15 are provided here.

3.1 OVERVIEW OF PSA COMPLIANCE

PSA is a concept originated by Arm and managed by third party labs and certification authorities, with the goal of
standardizing the security methods across the varying types of connected devices in the semiconductor industry. It
provides established best practices, as well as documentation and methods to determine whether a given device meets
the outlined standards.

PSA protects sensitive assets (keys, credentials and firmware) by separating them from the application firmware
and hardware. It defines a Secure Processing Environment (SPE) for this data, the code that manages it, and its trusted
hardware resources.

The "Updatable and Immutable Areas" figure (Figure 3) shows the updatable and the immutable (non-changable)
parts of an RSL15-based system that is intended for PSA compliance and follows the PSA Device Model guidelines.
This clearly shows the secure bootloader in relation to the other parts of the system. The secure bootloader forms part of
the chip scope, but is also part of the updateable components.

onsemi

CHAPTER 3

www.onsemi.com

18

https://www.psacertified.org/

onsemi

Secure Bootloader Guide

Figure 3. Updatable and Immutable Areas

Similar to the PSA documentation and references available online, we use the following terms in this
documentation:

Entity
The device about which the attestation provides information

Manufacturer
The company that made the entity. This can be a chip vendor, a circuit board module vendor, or a
vendor of finished consumer products.

Relying Party
The server, service or company that makes use of the information in the Entity Attestation Token
(EAT) about the entity. (See Section 7.3 “Attestation Token” on page 32 for more information about
the EAT.)

www.onsemi.com

19

4.Basic Bootloader
The secure bootloader can be used as a non-secure bootloader if the security features are not needed. In this case,

the bootloader provides the following features:

l Booting of an application from flash
l Updating to store a new application in flash
l Updating the bootloader

4.1 GENERAL USAGE

The bootloader must be loaded onto the device. An application to be used with the bootloader must have its start
address in the location expected by the bootloader. See Section 2 “Overview” on page 12 for more information.

The "Standard Load and Update Sequence" figure (Figure 4) illustrates the process for updating the application
stored in flash.

onsemi

CHAPTER 4

www.onsemi.com

20

onsemi

Secure Bootloader Guide

Figure 4. Standard Load and Update Sequence

Each request has a frame consistency sequence on it (a simple CCITT CRC of the data in the request). A block
load request includes the length of the application being loaded, and the CRC32 for the whole application. Once a
number of blocks have been loaded, the CRC32 is checked to ensure that no frames have been lost or corrupted during
transmission. At any stage, if an error is detected (e.g., a timeout or a bad frame), the load process terminates with an
END message and an indicator of the reason for the failure.

www.onsemi.com

21

onsemi

Secure Bootloader Guide

The application used in the firmware update process must include bootloader.h and use SYS_BOOT_VERSION to set
the version number of the new application. The bootloader references this information. See the Device Firmware
Update (DFU) Guide for further information about this and other basic bootloader features. The standard bootloader
sample application is described there, but much of the information is also applicable to the basic bootloader (non-
secure) functionality of the secure bootloader operation.

www.onsemi.com

22

../../../../../Content/device_firmware_update_guide/dfu_LandingPage.htm
../../../../../Content/device_firmware_update_guide/dfu_LandingPage.htm

5.Secure Bootloader
The secure mode of the bootloader provides the following features:

l Booting of a secure application from flash
l Updating to store a new secure application in flash
l Updating the secure bootloader
l Support for PSA (Platform Security Architecture) level 1 compliance

5.1 BOOTING A SECURE APPLICATION

The secure bootloader provides firmware integrity and authenticity validation during a secure or trusted boot
process. The main interface consists of an initialization function and a function to authenticate a Root of Trust
certificate chain based on a given Root of Trust.

blSecureBootStatus_t BL_SecureBootAuthenticate(
uint32_t opkey1, uint32_t opkey2, uint32_t opcontent,
bool verifyImages, uint32_t relocation);

5.2 UPDATING A SECURE APPLICATION

When a secure application must be updated, the process is as follows:

l Request an update. The bootloader polls a flag to determine if an update is requested, so this must be set.

BL_UpdateType_t BL_UpdateIsAvailable(uint32_t address, uint32_t extent);

l Provide a new secure application. The bootloader checks if there is a new image in the download area.

BL_UpdateType_t BL_UpdateIsAvailable(uint32_t address, uint32_t extent);

l Update the image. The bootloader uses the function with this prototype to perform the update.

void BL_UpdateImage(BL_UpdateType_t request,
uint32_t srcAddress, uint32_t dstAddress, uint32_t dstLength);

The application must also be authenticated. There are options to share a Root of Trust between the secure
application and secure bootloader, such that a tradeoff can be made between boot time and the level of security needed.
Alternatively, they can use separate Roots of Trust for increased security, but with increased boot time. The sequence is
shown in the "Secure Authenticate/Load/Update Sequence" figure (Figure 5).

onsemi

CHAPTER 5

www.onsemi.com

23

onsemi

Secure Bootloader Guide

Figure 5. Secure Authenticate/Load/Update Sequence

www.onsemi.com

24

onsemi

Secure Bootloader Guide

The update process for the simple bootloader is very similar to that for the secure bootloader, the main differences
being that the secure bootloader uses a different CCITT CRC algorithm on each frame and the connection must be pre-
authenticated using a valid key certificate.

5.3 UPDATING THE SECURE BOOTLOADER ITSELF

Updating the secure bootloader itself is much the same as updating a secure application. It uses the same function
but with a different image. Flags are used for differentiation between a basic bootloader and a secure bootloader to
determine the image size needed, since the secure bootloader uses more memory.

To prepare a secure bootloader, take the following steps:

l Ensure that you have, or make sure to create, all the necessary keys and key certificates. See the RSL15 Security
User's Guide for details on creating secure applications.

l Create a content certificate based on the key certificates.
l Sign the image using the created certificates.

The new bootloader must be fully validated prior to switching to it, so that a complete copy is held in memory.

IMPORTANT: When updating a bootloader via the secure bootloader download mechanisms, care must be
taken to ensure that the image being loaded is correct and that the update process is allowed to run to
completion.

The update process is in two parts:

1. Initially, the new application or bootloader is stored in the download area of flash memory.
2. When the system is reset, the secure bootloader verifies and, if necessary, authenticates the image in the

download area. If these checks pass, the image is copied to the secure bootloader area of flash memory.

This copying from the download area to the bootloader area by definition corrupts the bootloader at some
point before the full image has been copied. If the power is lost during this stage, the system cannot recover,
requiring a new bootloader to be loaded using the debug port.

Similarly, if the application or bootloader that has been loaded is faulty or is not a valid bootloader, this
renders the secure bootloader unable to function.

In the current design there is no way around this issue; however, there are several mitigation strategies that
can be employed to provide a more robust solution. These can include some combination of the following:

l Store a redundant copy of the bootloader, which can be reverted to in case of major system failure.
o This redundant copy can have limited verification and authentication capabilities if that meets

the customer needs.
l Partition the bootloader such that it has a mutable and immutable component. The immutable
component could be the part that handles the copying from the download area to the secure bootloader
area.

l Disable the ability to update the bootloader itself except under very specific and controlled
circumstances where the user cannot unintentionally render the device completely inoperable.

www.onsemi.com

25

onsemi

Secure Bootloader Guide

5.4 SUPPORT FOR IMMUTABLE PORTIONS IN THE SECURE BOOTLOADER

The concept of updateable and immutable portions of a secure processing environment is introduced in Section 3.1
“Overview of PSA Compliance” on page 18. RSL15 has the following support for the immutable portions of the secure
processing environment:

l A boot ROM that can handle a Secure Boot and Secure Debug process
l Hardware isolation of cryptographic functions and the storage of security-related assets
l Unique key storage and the concept of a hardware unique key
l A managed security life cycle as described in the RSL15 Security User's Guide
l Trusted subsystems providing a separation between the secure and non-secure environments, using TrustZone

www.onsemi.com

26

6.Secure Storage
Protected storage is required to hold the keys and any other context that must be maintained. Any secure code has

free access to the contents of the secure storage area.

6.1 SECURE STORAGE AREA

The bootloader's sections.ld file shows the size and start address of the secure storage area:

/* Reserve the remaining 11K from the first data sector for secure storage */
BL_SECURE_STORE (xrw) : ORIGIN = 0x0015A400, LENGTH = 11K

6.2 CONTENT TO BE STORED IN SECURE STORAGE

l RSA public/private key pair
l ECC public/private key pair
l AES key

6.3 API

The API for secure storage is defined in bl_simple_filer.h and bl_file_encryption.h. The former provides the basic
file system handler, and the latter provides the encryption layer. See the API reference or the files in the sample
implementation for details.

Some important functions are as follows.

From bl_simple_filer.h:

BL_FStoreStatus_t BL_FStoreWrite(BL_FSFileId_t id,
uint8_t *buffer, uint16_t size, uint16_t flags);

BL_FStoreStatus_t BL_FStoreWrite(BL_FSFileId_t id,
uint8_t *buffer, uint16_t size, uint16_t flags);

BL_FStoreStatus_t BL_FStoreDelete(BL_FSFileId_t id);

BL_FStoreStatus_t BL_FStoreFileList(
uint8_t *buffer, uint16_t *maxsize, bool showHidden);

From bl_file_encryption.h:

BL_EncryptionStatus_t BL_EncryptBuffer(uint8_t *buffer, size_t length);

BL_EncryptionStatus_t BL_DecryptBuffer(uint8_t *buffer, size_t length);

6.4 BASIC OPERATION

The secure bootloader offers a simple file system, primarily for storing attestation keys, but it can also be used for
the general storage of small files.

The file system location is defined in bl_memory.h and occupies a range of sectors in data flash. Due to the
limitations of the flash, the file system space is set to 11 KB.

onsemi

CHAPTER 6

www.onsemi.com

27

onsemi

Secure Bootloader Guide

The file system is organized in blocks that align with the underlying data sectors. Each data sector is 256 bytes in
length; therefore, 44 blocks are available for use.

NOTE: A single file can be stored in more than one block. A single block can only contain information
for a single file.

The first sector contains the inode table, which describes the blocks that are allocated to each file. There is a single
inode entry for each file held in the file system. Each inode is defined as 12 bytes; therefore, a maximum of 21 files are
supported by the file system.

Each inode/file contains the following information:

l The list of blocks allocated to the file. This is a 48-bit mask where a 1 indicates that the data block is used by
that file.

l The file ID, which is defined as a 16-bit value because space is limited. How this is derived from a textual
filename is left to the caller.

l A flags word, which contains a 16-bit value that indicates if the file is readable, writable, or can be deleted
l Size of the file in bytes. This is a 16-bit value because the maximum size of the store is defined as 11 KB. This
is large enough to handle any file that can be stored.

IMPORTANT: When using the bootloader in debug mode, the Hardware Unique Key (HUK) is used, and
appears differently when debugging compared with its appearance in typical usage. This means that when the
key checking is performed, the HUK appears to be invalid, causing all inodes and any prior data stored in the
secure storage area to be wiped.

www.onsemi.com

28

7.Attestation
Attestation, in this context, refers to providing information about the device to other parties using a very simple,

cryptographically secured token; this is part of PSA compliance. Attestation provides a device with the ability to sign an
array of bytes with a device private key and return the result to the caller. There are several use cases, ranging from
attestation of the device state to generating a key pair and proving that it has been generated inside a secure key store.

7.1 OVERVIEW AND BACKGROUND

To maintain the Root of Trust, the secure bootloader only lets you program the device if you prove that you are
allowed to do so. A challenge and response process matches certificates; if you do not have a matching certificate, it is
not possible for you to program the device.

Part of attestation is the Entity Attestation Token (EAT), which contains claims that are generated in the device
RoT. EAT token generation is expected to be performed many times, possibly for each transaction. It is relatively
inexpensive because the claims data is small and ECDSA signing is relatively fast. For further details about the EAT,
see Section 7.3 “Attestation Token” on page 32.

The token is sent to the device, and then goes to the relying party, which then relays it (without examining or
modifying it) to the attestation service for verification.

7.2 ATTESTATION INTERFACE

The PSA Attestation API is a standard interface provided by the PSA Root of Trust.

For attestation within the context of PSA, the key can be generated or injected into the system. For the RSL15
secure bootloader sample application, there is a function to inject a key. If the application is not given an injected key, it
creates and internal key.

The main relevant functions for the RSL15 attestation interface are as follows:

l Inject attestation key
l Get attestation token
l Get attestation token size

A summary and the prototypes of the attestation interface functions are provided below. See the relevant parts of
the full API and the bl_attestation.h header file for further details on function parameters.

7.2.1 Key Injection

l The key injection interface allows for the injection of keys generated externally to the device.
l It also allows for keys to be generated on the device and then stored for later use.
l AES keys are derived from the HUK (Hardware Unique Key) using some form of initial value.
l If a key is provided, the private component key is stored and the public component is returned. If no key is
provided, a new key is generated, the private component is stored and the public component is returned. If a
symmetric (AES) key is requested, the key is stored and returned.

BL_AttestStatus_t BL_AttestInjectKey(
const uint8_t *key, size_t keySize, BL_AttestKeyType_t type,
uint8_t *publicKey, size_t publicKeyMaxSize, size_t *publicKeySize);

onsemi

CHAPTER 7

www.onsemi.com

29

onsemi

Secure Bootloader Guide

7.2.2 Get Token

To use the token, the attestation client issues some form of challenge and the device needs to respond. Part of the
challenge is a random value that needs to be in the token to confirm its validity. This function is used to request the
token from the device.

BL_AttestStatus_t BL_AttestGetToken(
const uint8_t *challenge, BL_AttestationChallengeSize_t challengeSize,

uint8_t *token, uint32_t *tokenSize);

7.2.3 Get Token Size

BL_AttestStatus_t BL_AttestGetTokenSize(
BL_AttestationChallengeSize_t challengeSize, uint32_t *tokenSize);

7.2.4 Key Injection Process

The "Attestation Key Injection Diagram" figure (Figure 6) illustrates the process of key injection.

www.onsemi.com

30

onsemi

Secure Bootloader Guide

Figure 6. Attestation Key Injection Diagram

www.onsemi.com

31

onsemi

Secure Bootloader Guide

7.3 ATTESTATION TOKEN

7.3.1 Format of Token

The attestation token takes the format of what is becoming an industry standard: an entity attestation token (EAT).

For the purposes of this sample code, a variant of the Arm Platform Security Architecture attestation token has
been chosen to provide the basic structure. More information is available at: https://www.psacertified.org/blog/what-is-
an-entity-attestation-token/.

An EAT is a small blob of data that includes information items and is cryptographically signed. The signing
secures the token itself, so that the mechanism that is transmitting the token does not have to provide any security. This
allows IoT devices to securely introduce themselves to networks and to IoT platforms. The EAT is wrapped into a
compact binary object representation (CBOR)-type message.

Each information item in this token in known as a claim, as shown in the "Items Included in Token" table (Table
2). A claim is a data item, which is represented as a key-value pair.

Item Size
(bytes) Description

Authentication
Challenge

32/48/64 Input object of random bytes provided by the caller, intended to provide freshness to reports

Instance ID 32 Hash of public key that represents the unique identifier of the instance and is encoded as a byte
string

Implementation ID 32 Represents the original implementation signer of the attestation key and identifies the contract
between the report and verification. A verification service uses this claim to locate the details of the
verification process. Consists of a value encoded as byte string.

Security Lifecycle 4 Positive ID corresponding to secure (0x3000) which represents the current lifecycle state of the
instance

Client ID 4 Partition ID which, for the secure bootloader, is a positive value indicating it is a secure caller of the
initial attestation API. The value is encoded as a signed integer.

Hardware Version 16 EAN-13, which can be used to reference the security level of the PSA-ROT via a certification
website, and is encoded as a text string

Boot Seed 32 Byte string for the random value created at system boot time that allows differentiation of reports
from different system sessions

Software Components:

ROM 32 SHA256 of ROM image

Bootloader 32 SHA256 of Bootloader

Application 32 SHA256 of Application

Table 2. Items Included in Token

The size of the attestation token is governed by the fields outlined in the "Items Included in Token" table (Table 2),
and by how these values are encoded into a CBOR data stream. In addition, the EAT is wrapped into a signed format
which includes a hash of the CBOR data, as well as a signature based on the size and type of the attestation key.

www.onsemi.com

32

https://www.psacertified.org/blog/what-is-an-entity-attestation-token/
https://www.psacertified.org/blog/what-is-an-entity-attestation-token/

onsemi

Secure Bootloader Guide

The "Example Token Sizes" table (Table 3) provides some example token sizes for different challenge and key
sizes. All values are in bytes.

Key Size 1024 2048 3072
Challenge
Size EAT Hash Sign CBOR Total EAT Hash Sign CBOR Total EAT Hash Sign CBOR Total

32 248 32 128 59 467 248 32 256 60 596 248 32 384 60 724
48 264 32 128 59 483 264 32 256 60 612 264 32 384 60 740
64 280 32 128 59 499 280 32 256 60 628 280 32 384 60 756

Table 3. Example Token Sizes

An example calculation can be found in the sample application source code in bl_eat.c.

NOTE: Some items in the EAT are provided as placeholder default values in the secure bootloader
sample application. They are intended to be replaced as needed in a final product implementation.

7.3.2 EAT Additional Details

EAT has the capabilities to provide the source of trust, using a cryptographically signed piece of data containing
claims that are generated in the device Root of Trust (RoT). The main use is for the relying party to verify the claims
made by the device, such as the following:

l The unique identity of the device
l Installed firmware on the device and its integrity status
l Security assurance and certification status (such as a PSA Certified level)
l Manufacturer of the device hardware

Using this information, the relying party can make informed decisions, such as whether the device is legitimate and
should be trusted, or what services to enable based on the information it receives. This is shown in the "Relying Party
Decision Diagram" figure (Figure 7).

Figure 7. Relying Party Decision Diagram

7.3.3 Attestation Token Request

The "Attestation Token Request" figure (Figure 8) shows the process of requesting an attestation token.

www.onsemi.com

33

onsemi

Secure Bootloader Guide

Figure 8. Attestation Token Request

www.onsemi.com

34

8.Secure Bootloader Sample Reference

Secure Bootloader Sample Reference.

8.1 SUMMARY

Typedefs

l BL_FCS_t : Define a FCS type.
l BL_BootAppId_t : Define the application ID as a six character string.

Variables

l BL_ImageWorkspace : Defines a common operation buffer for handling images.

Data Structures

l BL_AppConfiguration_t : Define a structure which can map onto the configuration area.
l BL_ImageOperation_t : Buffer used for loading data in chunks, allow 2 blocks.
l BL_ImageSplitRange_t : define an address range which can wrap-around a reserved block
l BL_StatusResponse_t : to maintain backwards compatibility, we use a two byte status for most messages.
l BL_BootAppVersion_t : Define the application version as id and version details.
l BL_HelloResponse_t : Define the contents of a Hello response.

Enumerations

l BL_UpdateType_t : Define the possible update types.
l BL_ConfigStatus_t : Define the configuration status values.
l BL_FCSStatus_t : Define the possible FCS status values.
l BL_FCSAlgorithm_t : Define the possible valid FCS calculators.
l BL_ImageType_t : Define the known image types.
l BL_ImageStatus_t : Define the image status values.
l BL_LoaderCommand_t : Enum specifying each of the valid commands the loader recognizes.
l BL_LoaderStatus_t : Define a set of supported loader status codes.
l BL_LoaderCertType_t : Enum specifying the types of certificate that can be loaded.
l BL_LoaderStatusType_t : Define a type for the status messages.
l BL_UARTStatus_t : Define a set of supported error codes.

Macros

l VT_OFFSET_STACK_POINTER : Vector table offset for the stack pointer.
l VT_OFFSET_RESET_VECTOR : Vector table offset for the reset vector.

onsemi

CHAPTER 8

www.onsemi.com

35

group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___app_configuration__t
group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___image_operation__t
group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___image_split_range__t
group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___status_response__t
group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___boot_app_version__t
group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___hello_response__t

onsemi

Secure Bootloader Guide

l VT_OFFSET_VERSION_INFO : Vector table offset for the version information pointer.
l VT_OFFSET_IMAGE_SIZE : Vector table offset for the used image size pointer.
l VT_OFFSET_CERT_SIZE : Vector table offset for the certificate size.
l BL_CONFIGURATION_BASE : Base address of the boot configuration in flash.
l BL_CONFIGURATION_WORDS : Define the size of the configuration area in words.
l FLASH_BOND_INFO_SIZE
l BL_CODE_SECTOR_SIZE : The image block size when loading data.
l BL_DATA_SECTOR_SIZE : The image block size when loading data.
l BL_FLASH_RESERVED_SIZE : The size of the area reserved for use by the ROM and stack.
l BL_SECURE_STORAGE_BASE : Define the base address of the secure storage area.
l BL_SECURE_STORAGE_SIZE : Define a size for the secure storage area.
l BL_SECURE_STORAGE_TOP : Define the top of the secure storage area.
l BL_BOOTLOADER_BASE : The base address of the bootloader flash.
l BL_BOOTLOADER_KB : Define the size of the bootloader in kB.
l BL_BOOTLOADER_SIZE : The size of the area reserved for use by the bootloader.
l BL_FLASH_CODE_BASE : The base of the code flash.
l BL_FLASH_DATA_BASE : The base of the data flash, offset by the reserved areas.
l BL_FLASH_CODE_TOP : Define the top of code flash in 512K device.
l BL_FLASH_DATA_TOP : Define the top of data flash in 512K device.
l BL_FLASH_CODE_SIZE : Code size is derived from the base and top addresses.
l BL_FLASH_DATA_SIZE : Data size is derived from the base and top addresses.
l BL_APPLICATION_BASE : Define the base address of the application.
l BL_AVAILABLE_SIZE : Define the total available flash for application and download.
l BL_APPLICATION_SIZE : Define the maximum size of an application.
l BL_DOWNLOAD_BASE : Define the base address of the download area.
l BL_DOWNLOAD_SIZE : Define the maximum size of the download area.
l BL_OPT_FEATURE_ENABLED : Indicator that a given feature should be enabled.
l BL_OPT_FEATURE_DISABLED : Indicator that a given features should be disabled.
l BL_OPT_FEATURE_BOOTLOADER : Marker indicating that the bootloader feature is enabled.
l BL_OPT_FEATURE_SECURE_BOOTLOADER : Marker indicating that the bootloader supports authenticated
update of images.

l BL_OPT_FEATURE_SECURE_STORAGE : Marker indicating if the secure storage feature is provided.
l BL_OPT_FEATURE_ATTESTATION : Marker indicating if the bootloader supports attestation protocols.
l BL_OPT_ATTEST_KEY_AES : Marker indicating that the attestation feature supports AES keys.
l BL_OPT_ATTEST_KEY_RSA : Marker indicating that the attestation feature supports RSA keys.
l BL_OPT_ATTEST_KEY_ECC : Marker indicating that the attestation feature supports ECC keys.
l BL_OPT_SECURE_FILE_SYSTEM_RESET : Marker indicating that the attestation feature supports AES keys.
l DEBUG_CATCH_GPIO
l UART_CLK : Set UART peripheral clock.
l SENSOR_CLK : Set sensor clock.
l USER_CLK : Set user clock.
l VCC_BUCK_ENABLE : Enable or disable the buck converter.
l BL_TICKER_TIME_MS : Define the time in ms for each interrupt.
l BL_DEBUG : Define the standard verbose/debug tracing routine.
l BL_TRACE : Define the standard tracing routine.
l BL_WARNING : Define the standard warning message routine.
l BL_ERROR : Define the standard error message routine.
l BL_UART_RX_TIMEOUT_MS : Define the receive timeout in milliseconds.
l BL_WATCHDOG_FEED_ME_MS : While waiting for UART input, ensure watch dog is fed.

www.onsemi.com

36

onsemi

Secure Bootloader Guide

l BL_UART_TX_TIMEOUT_MS : Define the send timeout in milliseconds.
l BL_UART_MAX_RX_LENGTH : Define the maximum length of a single receive operation.
l BL_UART_MAX_TX_LENGTH : Define the maximum length of a single send operation.
l BL_BAUD_RATE : Define a baud rate for loading.
l BL_UART_DELAY_CYCLES : Define a delay time to allow the hardware buffers to clear.
l UPDATE_GPIO : Define the GPIO pin to be used to indicate an update is required.
l MIN : Define a shorthand to get the minimum of two values.
l MAX : Define a shorthand to get the maximum of two values.
l BITS2BYTES : Calculate the number of bytes needed to hold x bits.
l BITS2HALFWORDS : Calculate the number of 16 bit words needed to hold x bits.
l BL_VERSION_ENCODE : Define a mechanism to encode a version number as a uint16_t.
l BL_VERSION_DECODE : Define a mechanism to decode a version number from a uint16_t.
l BL_BOOT_VERSION : Define the boot version including name and ensure it is stored in an easily accessible
location.

l BL_WATCHDOG_MAX_HOLD_OFF_SECONDS : Define the maximum time that can elapse before the
watchdog must be refreshed.

Functions

l BL_CheckRemapAddressSpace : Determine download address based on given address which may be in
bootloader or application space.

l BL_CheckGetApplicationSize : Fetch the application size from a buffer defined by base address of the
application vector table.

l BL_CheckRelocatedApplicationSize : Fetch the application size from a buffer defined by base address of the
application vector table.

l BL_CheckIfImageUpdateAvailable : Check for a valid update using the non-secure file format.
l BL_CheckIfSecureImageUpdateAvailable : Check for a valid update using the secure file format.
l BL_CheckFindSecondaryImageLocation : Based on a primary image address, calculate the potential location
and extent of any secondary image.

l BL_ConfigIsValid : Helper function to return the configuration area status.
l BL_ConfigCertificateAddress : Fetch the address of the requested structure.
l BL_FCSInitialize : Initialize the FCS module, deriving the selected algorithm from the provided sample data.
l BL_FCSQuery : Query the currently selected FCS algorithm.
l BL_FCSAuthenticationRequired : Provides a mechanism to determine if the loading process should apply
authentication to the protocol and images.

l BL_FCSSelect : Select a specific FCS algorithm.
l BL_FCSCheck : Check the validity of a buffer against a given FCS.
l BL_FCSCalculate : Calculate the FCS of a given buffer.
l BL_FCSAccumulateCRC : Helper method to accumulate a CRC given a buffer and a length.
l BL_FlashInitialize : Initialize the flash subsystem.
l BL_FlashSaveSector : Save a buffer to a specified flash address.
l BL_ImageInitialize : Initialize the image module for a specific set of image attributes.
l BL_ImageAddress : Convert an address to take into account potential offsets.
l BL_ImageAddressRange : Helper routine which allows access of the image as a contiguous block of addresses,
wrapping around the reserved block.

l BL_ImageCopyMemoryRange : Copy a possibly split memory range to a contiguous buffer.
l BL_ImageSaveBlock : Save a block of data from a RAM buffer to the next block in Flash.
l BL_ImageVerify : Verify the most recently loaded image.

www.onsemi.com

37

onsemi

Secure Bootloader Guide

l BL_ImageAuthenticate : Authenticate a loaded image.
l BL_ImageAuthenticateCurrent : Authenticate the most recently loaded image.
l BL_ImageIsValid : Check if there is a valid image to start.
l BL_ImageSaveAddress : Return the download address corresponding to the requested address.
l BL_ImageStartApplication : Start the image stored in flash.
l BL_LoaderPerformFirmwareLoad : Perform a firmware update over the UART interface.
l BL_LoaderCertificateAddress : Fetch the address of the requested structure.
l BL_RecoveryInitialize : Define the initialization routine for the Debug Catch feature.
l BL_TargetInitialize : Target initialization function, loads the trim values and sets up the various clocks used in
the system.

l BL_TargetReset : Reset the device using NVIC.
l BL_TickerInitialize : Initialize the timer tick.
l BL_TickerTime : Get the current timer tick value.
l SysTick_Handler : System tick interrupt handler, required by the ticker.
l BL_TraceInitialize : Initialize the trace sub-system.
l BL_UARTInitialize : Initialize the UART subsystem.
l BL_UARTReceiveAsync : Start receiving a fixed length data buffer using the UART.
l BL_UARTReceiveComplete : Complete the reception of an executing receive operation.
l BL_UARTReceive : Receiving a fixed length data buffer using the UART.
l BL_UARTSendAsync : Start sending a fixed length data buffer using the UART.
l BL_UARTSendComplete : Complete the transmission of an executing send operation.
l BL_UARTSend : Send a fixed length data buffer using the UART.
l BL_UpdateInitialize : Initialize the firmware update component.
l BL_UpdateRequested : Check if a firmware update is being requested.
l BL_UpdateProcessPendingImages : This will check for any pending images which have previously been
downloaded and if any are found will copy them to the appropriate location for execution.

l BL_ImageSelectAndStartApplication : This will attempt to start any images which are available.
l BL_VersionsGetInformation : Get the version information from a suitable application.
l BL_VersionsGetHello : Fetch the hello response from the bootloader.
l BL_WatchdogInitialize : Initialise the watchdog module.
l BL_WatchdogSetHoldTime : Set the watchdog hold off time to seconds.
l WATCHDOG_IRQHandler : Define an interrupt handler for the watchdog interrupt.

8.2 DETAILED DESCRIPTION

This reference chapter presents a detailed description of all the components included in the secure bootloader reference
application. This reference application has four levels of secure operation, available as needed depending on the end
product's use cases:

1. Basic bootloader (non-secure)
2. Secure bootloader (maintains authenticated Root of Trust set up by the ROM)
3. Secure bootloader with secure storage
4. Secure bootloader with secure storage and device attestation

8.3 SECURE BOOTLOADER SAMPLE REFERENCE TYPEDEF DOCUMENTATION

www.onsemi.com

38

onsemi

Secure Bootloader Guide

8.3.1 BL_FCS_t

typedef uint16_t BL_FCS_t

Location: bl_fcs.h:52

Define a FCS type.

8.3.2 BL_BootAppId_t

typedef char BL_BootAppId_t

Location: bl_versions.h:75

Define the application ID as a six character string.

8.4 SECURE BOOTLOADER SAMPLE REFERENCE VARIABLE DOCUMENTATION

8.4.1 BL_ImageWorkspace

BL_ImageOperation_t BL_ImageWorkspace

Location: bl_image.h:85

Defines a common operation buffer for handling images.

8.5 SECURE BOOTLOADER SAMPLE REFERENCE ENUMERATION TYPE DOCUMENTATION

8.5.1 BL_UpdateType_t

Location: bl_check.h:66

Define the possible update types.

www.onsemi.com

39

onsemi

Secure Bootloader Guide

Members

l BL_UPDATE_IMAGE

l BL_UPDATE_BOOTLOADER

l BL_UPDATE_SECURE_IMAGE

l BL_UPDATE_SECURE_BOOTLOADER

l BL_UPDATE_SECONDARY_IMAGE

l BL_UPDATE_NONE

8.5.2 BL_ConfigStatus_t

Location: bl_configuration.h:57

Define the configuration status values.

Members

l BL_CONFIG_OKAY

l BL_CONFIG_CORRUPT

8.5.3 BL_FCSStatus_t

Location: bl_fcs.h:55

Define the possible FCS status values.

Members

l BL_FCS_NO_ERROR

l BL_FCS_VALID

www.onsemi.com

40

onsemi

Secure Bootloader Guide

l BL_FCS_INVALID

l BL_FCS_UNRECOGNIZED

l BL_FCS_NOT_INITIALIZED

8.5.4 BL_FCSAlgorithm_t

Location: bl_fcs.h:65

Define the possible valid FCS calculators.

Members

l BL_FCS_CCITT_FFFF = 0

l BL_FCS_MCRF4XX

l BL_FCS_NO_ALGO

8.5.5 BL_ImageType_t

Location: bl_image.h:51

Define the known image types.

Members

l BL_IMAGE_BOOTLOADER

l BL_IMAGE_APPLICATION

l BL_IMAGE_UNRECOGNIZED

www.onsemi.com

41

onsemi

Secure Bootloader Guide

8.5.6 BL_ImageStatus_t

Location: bl_image.h:58

Define the image status values.

Members

l BL_IMAGE_NO_ERROR = 0

l BL_IMAGE_ADDRESS_ERROR

l BL_IMAGE_LENGTH_ERROR

l BL_IMAGE_FLASH_ERROR

l BL_IMAGE_VERIFY_ERROR

l BL_IMAGE_AUTHENTICATE_ERROR

8.5.7 BL_LoaderCommand_t

Location: bl_loader.h:48

Enum specifying each of the valid commands the loader recognizes.

Members

l BL_LOADER_HELLO = 0

l BL_LOADER_PROGRAM

l BL_LOADER_READ

l BL_LOADER_RESTART

l BL_LOADER_ERROR

l BL_LOADER_COMMAND_MAX

www.onsemi.com

42

onsemi

Secure Bootloader Guide

8.5.8 BL_LoaderStatus_t

Location: bl_loader.h:81

Define a set of supported loader status codes.

Members

l BL_LOADER_NO_ERROR = 0

l BL_LOADER_BAD_MSG

l BL_LOADER_UNKNOWN_CMD

l BL_LOADER_INVALID_CMD

l BL_LOADER_GENERAL_FLASH_FAILURE

l BL_LOADER_WRITE_FLASH_NOT_ENABLED

l BL_LOADER_BAD_FLASH_ADDRESS

l BL_LOADER_ERASE_FLASH_FAILED

l BL_LOADER_BAD_FLASH_LENGTH

l BL_LOADER_INACCESSIBLE_FLASH

l BL_LOADER_FLASH_COPIER_BUSY

l BL_LOADER_PROG_FLASH_FAILED

l BL_LOADER_VERIFY_FLASH_FAILED

l BL_LOADER_VERIFY_IMAGE_FAILED

l BL_LOADER_NO_VALID_BOOTLOADER

l BL_LOADER_RX_FAILURE

l BL_LOADER_RX_TIMEOUT

l BL_LOADER_IMAGE_FAILURE

l BL_LOADER_VERIFICATION_FAILURE

l BL_LOADER_CERT_LOAD_FAILURE

l BL_LOADER_AUTHENTICATION_FAILURE

l BL_LOADER_AUTHENTICATE_IMAGE_FAILED

l BL_LOADER_FILE_SYSTEM_FAILURE

www.onsemi.com

43

onsemi

Secure Bootloader Guide

l BL_LOADER_ATTESTATION_FAILURE

8.5.9 BL_LoaderCertType_t

Location: bl_loader.h:110

Enum specifying the types of certificate that can be loaded.

Members

l BL_KEY1_CERT

l BL_KEY2_CERT

l BL_CONTENT_CERT

l BL_DEBUG_CERT

8.5.10 BL_LoaderStatusType_t

Location: bl_loader.h:119

Define a type for the status messages.

Members

l BL_LOADER_STATUS_TYPE_NEXT = 0x55

l BL_LOADER_STATUS_TYPE_END = 0xAA

l BL_LOADER_STATUS_TYPE_CRC = 0xCC

8.5.11 BL_UARTStatus_t

www.onsemi.com

44

onsemi

Secure Bootloader Guide

Location: bl_uart.h:79

Define a set of supported error codes.

Members

l BL_UART_NO_ERROR = 0

l BL_UART_TX_IDLE

l BL_UART_RX_IDLE

l BL_UART_TX_BUSY

l BL_UART_RX_BUSY

l BL_UART_TX_TIMEOUT

l BL_UART_RX_TIMEOUT

l BL_UART_INVALID_PARAMETER

l BL_UART_STATE_ERROR

l BL_UART_BAD_FCS

l BL_UART_RX_ERROR

l BL_UART_TX_ERROR

8.6 SECURE BOOTLOADER SAMPLE REFERENCE MACRO DEFINITION DOCUMENTATION

8.6.1 VT_OFFSET_STACK_POINTER

#define VT_OFFSET_STACK_POINTER 0

Vector table offset for the stack pointer.

Location: bl_check.h:47

8.6.2 VT_OFFSET_RESET_VECTOR

#define VT_OFFSET_RESET_VECTOR 1

www.onsemi.com

45

onsemi

Secure Bootloader Guide

Vector table offset for the reset vector.

Location: bl_check.h:50

8.6.3 VT_OFFSET_VERSION_INFO

#define VT_OFFSET_VERSION_INFO 8

Vector table offset for the version information pointer.

Location: bl_check.h:53

8.6.4 VT_OFFSET_IMAGE_SIZE

#define VT_OFFSET_IMAGE_SIZE 9

Vector table offset for the used image size pointer.

Location: bl_check.h:56

8.6.5 VT_OFFSET_CERT_SIZE

#define VT_OFFSET_CERT_SIZE 10

Vector table offset for the certificate size.

Location: bl_check.h:59

8.6.6 BL_CONFIGURATION_BASE

#define BL_CONFIGURATION_BASE ((BL_AppConfiguration_t *) FLASH0_DATA_BASE)

Base address of the boot configuration in flash.

Location: bl_configuration.h:47

www.onsemi.com

46

group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___app_configuration__t

onsemi

Secure Bootloader Guide

8.6.7 BL_CONFIGURATION_WORDS

#define BL_CONFIGURATION_WORDS (sizeof(BL_AppConfiguration_t) >> 2)

Define the size of the configuration area in words.

Location: bl_configuration.h:50

8.6.8 FLASH_BOND_INFO_SIZE

#define FLASH_BOND_INFO_SIZE 0x800

Location: bl_memory.h:53

8.6.9 BL_CODE_SECTOR_SIZE

#define BL_CODE_SECTOR_SIZE 2048

The image block size when loading data.

(Size of a code sector.)

Location: bl_memory.h:56

8.6.10 BL_DATA_SECTOR_SIZE

#define BL_DATA_SECTOR_SIZE 256

The image block size when loading data.

(Size of a code sector.)

Location: bl_memory.h:59

8.6.11 BL_FLASH_RESERVED_SIZE

#define BL_FLASH_RESERVED_SIZE (FLASH_DEU_RESERVED_SIZE + FLASH_BOND_INFO_SIZE)

www.onsemi.com

47

group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___app_configuration__t

onsemi

Secure Bootloader Guide

The size of the area reserved for use by the ROM and stack.

Location: bl_memory.h:62

8.6.12 BL_SECURE_STORAGE_BASE

#define BL_SECURE_STORAGE_BASE (FLASH0_DATA_BASE + BL_FLASH_RESERVED_SIZE)

Define the base address of the secure storage area.

Location: bl_memory.h:66

8.6.13 BL_SECURE_STORAGE_SIZE

#define BL_SECURE_STORAGE_SIZE (FLASH0_DATA_RSL15_284_TOP - BL_SECURE_STORAGE_BASE + 1)

Define a size for the secure storage area.

Location: bl_memory.h:69

8.6.14 BL_SECURE_STORAGE_TOP

#define BL_SECURE_STORAGE_TOP (BL_SECURE_STORAGE_BASE + BL_SECURE_STORAGE_SIZE - 1)

Define the top of the secure storage area.

Location: bl_memory.h:73

8.6.15 BL_BOOTLOADER_BASE

#define BL_BOOTLOADER_BASE FLASH0_CODE_BASE

The base address of the bootloader flash.

Location: bl_memory.h:77

www.onsemi.com

48

onsemi

Secure Bootloader Guide

8.6.16 BL_BOOTLOADER_KB

#define BL_BOOTLOADER_KB (24 * 1024)

Define the size of the bootloader in kB.

Location: bl_memory.h:104

8.6.17 BL_BOOTLOADER_SIZE

#define BL_BOOTLOADER_SIZE BL_BOOTLOADER_KB

The size of the area reserved for use by the bootloader.

Location: bl_memory.h:110

8.6.18 BL_FLASH_CODE_BASE

#define BL_FLASH_CODE_BASE (BL_BOOTLOADER_BASE + BL_BOOTLOADER_SIZE)

The base of the code flash.

Location: bl_memory.h:113

8.6.19 BL_FLASH_DATA_BASE

#define BL_FLASH_DATA_BASE (BL_SECURE_STORAGE_TOP + 1)

The base of the data flash, offset by the reserved areas.

Location: bl_memory.h:116

8.6.20 BL_FLASH_CODE_TOP

#define BL_FLASH_CODE_TOP FLASH0_CODE_TOP

Define the top of code flash in 512K device.

Location: bl_memory.h:129

www.onsemi.com

49

onsemi

Secure Bootloader Guide

8.6.21 BL_FLASH_DATA_TOP

#define BL_FLASH_DATA_TOP FLASH0_DATA_TOP

Define the top of data flash in 512K device.

Location: bl_memory.h:132

8.6.22 BL_FLASH_CODE_SIZE

#define BL_FLASH_CODE_SIZE (BL_FLASH_CODE_TOP - BL_FLASH_CODE_BASE + 1)

Code size is derived from the base and top addresses.

Location: bl_memory.h:137

8.6.23 BL_FLASH_DATA_SIZE

#define BL_FLASH_DATA_SIZE (BL_FLASH_DATA_TOP - BL_FLASH_DATA_BASE + 1)

Data size is derived from the base and top addresses.

Location: bl_memory.h:140

8.6.24 BL_APPLICATION_BASE

#define BL_APPLICATION_BASE BL_FLASH_CODE_BASE

Define the base address of the application.

Location: bl_memory.h:143

8.6.25 BL_AVAILABLE_SIZE

#define BL_AVAILABLE_SIZE (BL_FLASH_CODE_SIZE + BL_FLASH_DATA_SIZE)

Define the total available flash for application and download.

www.onsemi.com

50

onsemi

Secure Bootloader Guide

Location: bl_memory.h:146

8.6.26 BL_APPLICATION_SIZE

#define BL_APPLICATION_SIZE ((BL_AVAILABLE_SIZE >> 1) & 0xFFFFF800)

Define the maximum size of an application.

(must be 2K aligned)

Location: bl_memory.h:149

8.6.27 BL_DOWNLOAD_BASE

#define BL_DOWNLOAD_BASE (BL_APPLICATION_BASE + BL_APPLICATION_SIZE)

Define the base address of the download area.

Location: bl_memory.h:152

8.6.28 BL_DOWNLOAD_SIZE

#define BL_DOWNLOAD_SIZE BL_APPLICATION_SIZE

Define the maximum size of the download area.

Location: bl_memory.h:155

8.6.29 BL_OPT_FEATURE_ENABLED

#define BL_OPT_FEATURE_ENABLED 1

Indicator that a given feature should be enabled.

Location: bl_options.h:47

www.onsemi.com

51

onsemi

Secure Bootloader Guide

8.6.30 BL_OPT_FEATURE_DISABLED

#define BL_OPT_FEATURE_DISABLED 0

Indicator that a given features should be disabled.

Location: bl_options.h:50

8.6.31 BL_OPT_FEATURE_BOOTLOADER

#define BL_OPT_FEATURE_BOOTLOADER BL_OPT_FEATURE_ENABLED

Marker indicating that the bootloader feature is enabled.

Location: bl_options.h:56

8.6.32 BL_OPT_FEATURE_SECURE_BOOTLOADER

#define BL_OPT_FEATURE_SECURE_BOOTLOADER BL_OPT_FEATURE_DISABLED

Marker indicating that the bootloader supports authenticated update of images.

Location: bl_options.h:62

8.6.33 BL_OPT_FEATURE_SECURE_STORAGE

#define BL_OPT_FEATURE_SECURE_STORAGE BL_OPT_FEATURE_DISABLED

Marker indicating if the secure storage feature is provided.

Location: bl_options.h:67

8.6.34 BL_OPT_FEATURE_ATTESTATION

#define BL_OPT_FEATURE_ATTESTATION BL_OPT_FEATURE_DISABLED

Marker indicating if the bootloader supports attestation protocols.

Location: bl_options.h:72

www.onsemi.com

52

onsemi

Secure Bootloader Guide

8.6.35 BL_OPT_ATTEST_KEY_AES

#define BL_OPT_ATTEST_KEY_AES BL_OPT_FEATURE_DISABLED

Marker indicating that the attestation feature supports AES keys.

Location: bl_options.h:110

8.6.36 BL_OPT_ATTEST_KEY_RSA

#define BL_OPT_ATTEST_KEY_RSA BL_OPT_FEATURE_DISABLED

Marker indicating that the attestation feature supports RSA keys.

Location: bl_options.h:116

8.6.37 BL_OPT_ATTEST_KEY_ECC

#define BL_OPT_ATTEST_KEY_ECC BL_OPT_FEATURE_DISABLED

Marker indicating that the attestation feature supports ECC keys.

Location: bl_options.h:122

8.6.38 BL_OPT_SECURE_FILE_SYSTEM_RESET

#define BL_OPT_SECURE_FILE_SYSTEM_RESET BL_OPT_FEATURE_DISABLED

Marker indicating that the attestation feature supports AES keys.

Location: bl_options.h:167

8.6.39 DEBUG_CATCH_GPIO

#define DEBUG_CATCH_GPIO 0

Location: bl_recovery.h:44

www.onsemi.com

53

onsemi

Secure Bootloader Guide

8.6.40 UART_CLK

#define UART_CLK 8000000

Set UART peripheral clock.

Location: bl_target.h:43

8.6.41 SENSOR_CLK

#define SENSOR_CLK 32768

Set sensor clock.

Location: bl_target.h:46

8.6.42 USER_CLK

#define USER_CLK 1000000

Set user clock.

Location: bl_target.h:49

8.6.43 VCC_BUCK_ENABLE

#define VCC_BUCK_ENABLE (1)

Enable or disable the buck converter.

The system allows for two methods of reducing the battery power supply from a higher voltage (1.2V-3.6V) to usable
supply voltage (1.0V-1.31V). If the VBAT supply voltage is less than 1.4V, this should be disabled so that the device
uses the low drop out (LDO) regulator. Otherwise, the buck (DC-DC) converter may be enabled. Set this to: => 0 to dis-
able buck converter mode and enable linear mode => 1 to enable buck converter mode and disable linear mode

Location: bl_target.h:63

www.onsemi.com

54

onsemi

Secure Bootloader Guide

8.6.44 BL_TICKER_TIME_MS

#define BL_TICKER_TIME_MS 10

Define the time in ms for each interrupt.

Location: bl_ticker.h:45

8.6.45 BL_DEBUG

#define BL_DEBUG swmLogVerbose

Define the standard verbose/debug tracing routine.

Location: bl_trace.h:48

8.6.46 BL_TRACE

#define BL_TRACE swmLogInfo

Define the standard tracing routine.

Location: bl_trace.h:51

8.6.47 BL_WARNING

#define BL_WARNING swmLogWarn

Define the standard warning message routine.

Location: bl_trace.h:54

8.6.48 BL_ERROR

#define BL_ERROR swmLogError

Define the standard error message routine.

Location: bl_trace.h:57

www.onsemi.com

55

onsemi

Secure Bootloader Guide

8.6.49 BL_UART_RX_TIMEOUT_MS

#define BL_UART_RX_TIMEOUT_MS (3000)

Define the receive timeout in milliseconds.

Location: bl_uart.h:54

8.6.50 BL_WATCHDOG_FEED_ME_MS

#define BL_WATCHDOG_FEED_ME_MS (2000)

While waiting for UART input, ensure watch dog is fed.

Location: bl_uart.h:57

8.6.51 BL_UART_TX_TIMEOUT_MS

#define BL_UART_TX_TIMEOUT_MS (3000)

Define the send timeout in milliseconds.

Location: bl_uart.h:60

8.6.52 BL_UART_MAX_RX_LENGTH

#define BL_UART_MAX_RX_LENGTH (2048)

Define the maximum length of a single receive operation.

Location: bl_uart.h:63

8.6.53 BL_UART_MAX_TX_LENGTH

#define BL_UART_MAX_TX_LENGTH (2048)

Define the maximum length of a single send operation.

www.onsemi.com

56

onsemi

Secure Bootloader Guide

Location: bl_uart.h:66

8.6.54 BL_BAUD_RATE

#define BL_BAUD_RATE 115200

Define a baud rate for loading.

Location: bl_uart.h:69

8.6.55 BL_UART_DELAY_CYCLES

#define BL_UART_DELAY_CYCLES ((20 * SystemCoreClock) / BL_BAUD_RATE)

Define a delay time to allow the hardware buffers to clear.

Location: bl_uart.h:72

8.6.56 UPDATE_GPIO

#define UPDATE_GPIO 14

Define the GPIO pin to be used to indicate an update is required.

Location: bl_update.h:47

8.6.57 MIN

#define MIN ((a) < (b) ? (a) : (b))

Define a shorthand to get the minimum of two values.

Location: bl_util.h:46

8.6.58 MAX

#define MAX ((a) > (b) ? (a) : (b))

www.onsemi.com

57

onsemi

Secure Bootloader Guide

Define a shorthand to get the maximum of two values.

Location: bl_util.h:49

8.6.59 BITS2BYTES

#define BITS2BYTES ((x + 7) >> 3)

Calculate the number of bytes needed to hold x bits.

Location: bl_util.h:52

8.6.60 BITS2HALFWORDS

#define BITS2HALFWORDS ((x + 15) >> 4)

Calculate the number of 16 bit words needed to hold x bits.

Location: bl_util.h:55

8.6.61 BL_VERSION_ENCODE

#define BL_VERSION_ENCODE (((m) << 12) | ((n) << 8) | (r))

Define a mechanism to encode a version number as a uint16_t.

Location: bl_versions.h:54

8.6.62 BL_VERSION_DECODE

#define BL_VERSION_DECODE ((num >> 12) & 0xF), ((num >> 8) & 0xF), (num & 0xFF)

Define a mechanism to decode a version number from a uint16_t.

Location: bl_versions.h:57

www.onsemi.com

58

onsemi

Secure Bootloader Guide

8.6.63 BL_BOOT_VERSION

#define BL_BOOT_VERSION __attribute__ ((section(".rodata.boot.version"))) \
const BL_BootAppVersion_t blBootAppVersion = \
{ \

id, BL_VERSION_ENCODE(major, minor, revision) \
};

Define the boot version including name and ensure it is stored in an easily accessible location.

Location: bl_versions.h:62

8.6.64 BL_WATCHDOG_MAX_HOLD_OFF_SECONDS

#define BL_WATCHDOG_MAX_HOLD_OFF_SECONDS 600

Define the maximum time that can elapse before the watchdog must be refreshed.

Location: bl_watchdog.h:50

8.7 SECURE BOOTLOADER SAMPLE REFERENCE FUNCTION DOCUMENTATION

8.7.1 BL_CheckRemapAddressSpace

uint32_t BL_CheckRemapAddressSpace(uint32_t base, uint32_t address)

Determine download address based on given address which may be in bootloader or application space.

Location: bl_check.h:87

Parameters

Direction Name Description

base The base address of the application being checked.

address The given address in either bootloader or application
space.

www.onsemi.com

59

group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___boot_app_version__t

onsemi

Secure Bootloader Guide

Return

The adjusted address.

8.7.2 BL_CheckGetApplicationSize

uint32_t BL_CheckGetApplicationSize(uint32_t address)

Fetch the application size from a buffer defined by base address of the application vector table.

Location: bl_check.h:95

Parameters

Direction Name Description

address The address of the base of the vector table.

Return

the size derived from the application or zero if invalid.

8.7.3 BL_CheckRelocatedApplicationSize

uint32_t BL_CheckRelocatedApplicationSize(uint32_t address)

Fetch the application size from a buffer defined by base address of the application vector table.

Location: bl_check.h:103

Parameters

Direction Name Description

address The address of the base of the vector table.

www.onsemi.com

60

onsemi

Secure Bootloader Guide

Return

the size derived from the application or zero if invalid.

8.7.4 BL_CheckIfImageUpdateAvailable

BL_UpdateType_t BL_CheckIfImageUpdateAvailable()

Check for a valid update using the non-secure file format.

When dealing with a non-secure image, the following checks must be made:

Location: bl_check.h:116

l The address must be properly aligned and within a sensible range.
l The stack pointer resides in RAM, is 64 bit aligned, allows 10 words.
l The reset ISR follows the vector table address The address to check for a valid image. extent The maximum
extent of the area holding the image.
Return

Type of image update available in download area.

8.7.5 BL_CheckIfSecureImageUpdateAvailable

bool BL_CheckIfSecureImageUpdateAvailable()

Check for a valid update using the secure file format.

When dealing with a secure image, the following checks must be made:

Location: bl_check.h:132

l The address must be properly aligned and within a sensible range.
l The stack pointer resides in RAM, is 64 bit aligned, allows 10 words.
l The reset ISR follows the vector table.

www.onsemi.com

61

onsemi

Secure Bootloader Guide

l The full certificate chain must be authenticated. updateType The type of update being requested. address The
address to check for a valid image. extent The maximum extent of the area holding the image.
Return

True if the image has security signature, false otherwise.

8.7.6 BL_CheckFindSecondaryImageLocation

void BL_CheckFindSecondaryImageLocation(uint32_t primaryBase, uint32_t primaryExtent,
uint32_t * secondaryBase, uint32_t * secondaryExtent)

Based on a primary image address, calculate the potential location and extent of any secondary image.

Location: bl_check.h:144

Parameters

Direction Name Description

primaryBase The base address of the primary image, used to locate the
secondary one.

primaryExtent The maximum extent of the primary application;

secondaryBase

secondaryExtent

8.7.7 BL_ConfigIsValid

BL_ConfigStatus_t BL_ConfigIsValid(BL_AppConfiguration_t * configBase)

Helper function to return the configuration area status.

Location: bl_configuration.h:85

Parameters

Direction Name Description

configBase Defines the base address of the configuration block.

www.onsemi.com

62

group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___app_configuration__t

onsemi

Secure Bootloader Guide

Return

BL_CONFIG_OKAY if the configuration area has a valid CRC, BL_CONFIG_CORRUPT otherwise.

8.7.8 BL_ConfigCertificateAddress

uint32_t BL_ConfigCertificateAddress(BL_AppConfiguration_t * configBase, BL_
LoaderCertType_t cert)

Fetch the address of the requested structure.

Location: bl_configuration.h:93

Parameters

Direction Name Description

configBase Defines the base address of the configuration block.

cert A requested certificate.

Return

The address of the requested certificate or zero if invalid request.

8.7.9 BL_FCSInitialize

BL_FCSStatus_t BL_FCSInitialize(uint8_t * buffer, size_t length, BL_FCS_t fcs)

Initialize the FCS module, deriving the selected algorithm from the provided sample data.

Location: bl_fcs.h:86

Parameters

www.onsemi.com

63

group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___app_configuration__t

onsemi

Secure Bootloader Guide

Direction Name Description

buffer A buffer of bytes to be FCS'd.

length The number of bytes.

fcs The expected FCS value.

Return

BL_FCS_NO_ERROR if the FCS algorithm can be identified. BL_FCS_UNRECOGNIZED if the FCS
algorithm cannot be identified.

8.7.10 BL_FCSQuery

BL_FCSAlgorithm_t BL_FCSQuery()

Query the currently selected FCS algorithm.

Location: bl_fcs.h:92

Return

The currently selected algorithm.

8.7.11 BL_FCSAuthenticationRequired

bool BL_FCSAuthenticationRequired()

Provides a mechanism to determine if the loading process should apply authentication to the protocol and images.

Location: bl_fcs.h:99

Return

True if authentication is required

www.onsemi.com

64

onsemi

Secure Bootloader Guide

8.7.12 BL_FCSSelect

BL_FCSStatus_t BL_FCSSelect(BL_FCSAlgorithm_t algo)

Select a specific FCS algorithm.

Location: bl_fcs.h:108

Parameters

Direction Name Description

algo Selected from BL_FCSAlgorithm_t.

Return

BL_FCS_NO_ERROR If the algorithm is valid. BL_FCS_UNRECOGNIZED If the algorithm is not valid.

8.7.13 BL_FCSCheck

BL_FCSStatus_t BL_FCSCheck(uint8_t * buffer, size_t length, BL_FCS_t fcs)

Check the validity of a buffer against a given FCS.

Location: bl_fcs.h:119

Parameters

Direction Name Description

buffer A buffer of bytes to calculate a FCS over.

length The number of bytes.

fcs The expected FCS value.

www.onsemi.com

65

onsemi

Secure Bootloader Guide

Return

BL_FCS_VALID if the FCS matches the data. BL_FCS_INVALID if the FCS does not match the data.

8.7.14 BL_FCSCalculate

BL_FCSStatus_t BL_FCSCalculate(uint8_t * buffer, size_t length, BL_FCS_t * fcs)

Calculate the FCS of a given buffer.

Location: bl_fcs.h:130

Parameters

Direction Name Description

buffer A buffer of bytes to calculate a FCS over.

length The number of bytes.

fcs The calculated FCS value.

Return

BL_FCS_NO_ERROR if the FCS can be calculated. BL_FCS_INVALID if an error is detected when calculating
the FCS.

8.7.15 BL_FCSAccumulateCRC

uint32_t BL_FCSAccumulateCRC(uint8_t * buffer, size_t length)

Helper method to accumulate a CRC given a buffer and a length.

Location: bl_fcs.h:141

Parameters

www.onsemi.com

66

onsemi

Secure Bootloader Guide

Direction Name Description

buffer A buffer of bytes to calculate a CRC on.

length The number of bytes.

NOTE: This is expected to be used for RAM buffers where the use of the flash copier can't be used. The
CRC engine should be initialised prior to calling this function.

8.7.16 BL_FlashInitialize

void BL_FlashInitialize()

Initialize the flash subsystem.

Location: bl_flash.h:55

8.7.17 BL_FlashSaveSector

FlashStatus_t BL_FlashSaveSector(uint8_t * address, size_t length, uint8_t * buffer)

Save a buffer to a specified flash address.

Location: bl_flash.h:67

Parameters

Direction Name Description

address The address in flash to save the buffer.

length The number of bytes to save.

buffer A pointer to a buffer of data to be written.

Return

FLASH_ERR_NONE if the operation is successful otherwise an error code the flash library.

www.onsemi.com

67

onsemi

Secure Bootloader Guide

NOTE: The start address is expected to start on a sector boundary.

8.7.18 BL_ImageInitialize

BL_ImageType_t BL_ImageInitialize(uint8_t * address, size_t length, uint32_t crc)

Initialize the image module for a specific set of image attributes.

Location: bl_image.h:98

Parameters

Direction Name Description

address The base address of the image being loaded.

length The length of the image in bytes.

crc the crc of the image being loaded.

Return

The type of image recognized.

8.7.19 BL_ImageAddress

uint32_t BL_ImageAddress(uint32_t address)

Convert an address to take into account potential offsets.

Location: bl_image.h:107

Parameters

Direction Name Description

address The address in an image.

www.onsemi.com

68

onsemi

Secure Bootloader Guide

Return

The converted address.

8.7.20 BL_ImageAddressRange

void BL_ImageAddressRange(uint8_t * address, size_t length, BL_ImageSplitRange_t * range)

Helper routine which allows access of the image as a contiguous block of addresses, wrapping around the reserved
block.

Location: bl_image.h:118

Parameters

Direction Name Description

address An address within an image that may need to be adjusted.

length the length of the address range.

range A split range object that indicates where the address range
needs to be split.

8.7.21 BL_ImageCopyMemoryRange

void BL_ImageCopyMemoryRange(uint8_t * dst, BL_ImageSplitRange_t * range)

Copy a possibly split memory range to a contiguous buffer.

Location: bl_image.h:127

Parameters

Direction Name Description

dst The destination buffer.

range The range defining the source locations.

www.onsemi.com

69

group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___image_split_range__t
group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___image_split_range__t

onsemi

Secure Bootloader Guide

8.7.22 BL_ImageSaveBlock

BL_ImageStatus_t BL_ImageSaveBlock(BL_ImageOperation_t * operation)

Save a block of data from a RAM buffer to the next block in Flash.

Location: bl_image.h:135

Parameters

Direction Name Description

operation Defines the address and length of the block to be saved.

Return

Status code indicating if the save operation failed

8.7.23 BL_ImageVerify

BL_ImageStatus_t BL_ImageVerify()

Verify the most recently loaded image.

Location: bl_image.h:144

Return

BL_IMAGE_NO_ERROR If the CRC matches the data. BL_IMAGE_VERIFY_ERROR If the CRC does not
match the data.

8.7.24 BL_ImageAuthenticate

BL_ImageStatus_t BL_ImageAuthenticate(BL_ImageType_t imageType, uint32_t * address, size_
t length, bool verifyImages)

www.onsemi.com

70

group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___image_operation__t

onsemi

Secure Bootloader Guide

Authenticate a loaded image.

Location: bl_image.h:157

Parameters

Direction Name Description

imageType The type of the image being authenticated.

address The base address of the image to be authenticated.

length The size of the area in bytes.

verifyImages Flag indicating that the s/w images must be validated.

Return

BL_IMAGE_NO_ERROR If the CRC matches the data. BL_IMAGE_AUTHENTICATE_ERROR If the authen-
tication fails.

8.7.25 BL_ImageAuthenticateCurrent

BL_ImageStatus_t BL_ImageAuthenticateCurrent()

Authenticate the most recently loaded image.

Location: bl_image.h:167

Return

BL_IMAGE_NO_ERROR If the CRC matches the data. BL_IMAGE_AUTHENTICATE_ERROR If the authen-
tication fails.

8.7.26 BL_ImageIsValid

bool BL_ImageIsValid(uint32_t address, size_t length)

www.onsemi.com

71

onsemi

Secure Bootloader Guide

Check if there is a valid image to start.

Location: bl_image.h:176

Parameters

Direction Name Description

address The address of the image in flash.

length The length of the image in bytes.

Return

True if there is a valid application to start. False otherwise.

8.7.27 BL_ImageSaveAddress

uint32_t BL_ImageSaveAddress(BL_ImageType_t imageType, uint32_t address)

Return the download address corresponding to the requested address.

Location: bl_image.h:185

Parameters

Direction Name Description

imageType The type of the image being authenticated.

address The requested address

Return

The download address

www.onsemi.com

72

onsemi

Secure Bootloader Guide

8.7.28 BL_ImageStartApplication

void BL_ImageStartApplication(uint32_t imageBaseAddress)

Start the image stored in flash.

Location: bl_image.h:192

Parameters

Direction Name Description

imageBaseAddress The base address of the image to be started

8.7.29 BL_LoaderPerformFirmwareLoad

void BL_LoaderPerformFirmwareLoad()

Perform a firmware update over the UART interface.

Location: bl_loader.h:147

8.7.30 BL_LoaderCertificateAddress

uint32_t BL_LoaderCertificateAddress(BL_LoaderCertType_t cert)

Fetch the address of the requested structure.

Location: bl_loader.h:154

Parameters

Direction Name Description

cert A requested certificate.

Return

www.onsemi.com

73

onsemi

Secure Bootloader Guide

The address of the requested certificate or zero if invalid request.

8.7.31 BL_RecoveryInitialize

void BL_RecoveryInitialize()

Define the initialization routine for the Debug Catch feature.

Location: bl_recovery.h:57

8.7.32 BL_TargetInitialize

void BL_TargetInitialize()

Target initialization function, loads the trim values and sets up the various clocks used in the system.

Location: bl_target.h:77

8.7.33 BL_TargetReset

void BL_TargetReset()

Reset the device using NVIC.

Location: bl_target.h:82

8.7.34 BL_TickerInitialize

void BL_TickerInitialize()

Initialize the timer tick.

Location: bl_ticker.h:58

8.7.35 BL_TickerTime

uint32_t BL_TickerTime()

www.onsemi.com

74

onsemi

Secure Bootloader Guide

Get the current timer tick value.

Location: bl_ticker.h:64

Return

The time since the ticker was initialized in ms.

8.7.36 SysTick_Handler

void SysTick_Handler()

System tick interrupt handler, required by the ticker.

Location: bl_ticker.h:69

8.7.37 BL_TraceInitialize

void BL_TraceInitialize()

Initialize the trace sub-system.

Location: bl_trace.h:70

8.7.38 BL_UARTInitialize

void BL_UARTInitialize()

Initialize the UART subsystem.

Location: bl_uart.h:102

8.7.39 BL_UARTReceiveAsync

BL_UARTStatus_t BL_UARTReceiveAsync(uint8_t * buffer, size_t length)

www.onsemi.com

75

onsemi

Secure Bootloader Guide

Start receiving a fixed length data buffer using the UART.

Location: bl_uart.h:119

Parameters

Direction Name Description

buffer A pointer to a buffer in which to store the incoming data.

length The number of bytes to store in the buffer. (> 0)

Return

BL_UART_NO_ERROR if the operation is started successfully. BL_UART_INVALID_PARAMETER if the
length is zero. BL_UART_RX_BUSY if another receive operation is currently active.

NOTE: No checking is performed to ensure that the buffer is big enough to hold the requested number of
bytes. The calling function must ensure this is valid.

NOTE: There must be no pending receive operation pending when this is invoked.

8.7.40 BL_UARTReceiveComplete

BL_UARTStatus_t BL_UARTReceiveComplete(uint8_t * buffer, size_t length, BL_FCS_t * fcs)

Complete the reception of an executing receive operation.

Location: bl_uart.h:137

Parameters

www.onsemi.com

76

onsemi

Secure Bootloader Guide

Direction Name Description

buffer A pointer to a buffer in which to store the incoming data.

length The number of bytes to store in the buffer. (> 0)

fcs Indicating if a FCS should be calculated on the input. NULL
indicates no FCS calculation needed.

Return

BL_UART_NO_ERROR if the operation completes successfully. BL_UART_RX_IDLE if there is no pending
receive operation. BL_UART_RX_TIMEOUT if the receive operation timed out. BL_UART_BAD_FCS if the
receive operation had an invalid FCS.

NOTE: There must be an existing receive operation pending.

NOTE: This is a blocking operation.

8.7.41 BL_UARTReceive

BL_UARTStatus_t BL_UARTReceive(uint8_t * buffer, size_t length, BL_FCS_t * fcs)

Receiving a fixed length data buffer using the UART.

Location: bl_uart.h:161

Parameters

Direction Name Description

buffer A pointer to a buffer in which to store the incoming data.

length The number of bytes to store in the buffer. (> 0)

fcs Indicating if a FCS should be calculated on the input. NULL
indicates no FCS calculation needed.

Return

www.onsemi.com

77

onsemi

Secure Bootloader Guide

BL_UART_NO_ERROR if the operation is started successfully. BL_UART_INVALID_PARAMETER if the
length is zero. BL_UART_RX_BUSY if another receive operation is currently active. BL_UART_RX_
TIMEOUT if the receive operation timed out. BL_UART_BAD_FCS if the receive operation had an invalid
FCS.

NOTE: No checking is performed to ensure that the buffer is big enough to hold the requested number of
bytes. The calling function must ensure this is valid.

NOTE: There must be no pending receive operation pending when this is invoked.

NOTE: This is a blocking operation.

8.7.42 BL_UARTSendAsync

BL_UARTStatus_t BL_UARTSendAsync(uint8_t * buffer, size_t length, BL_FCS_t * fcs)

Start sending a fixed length data buffer using the UART.

Location: bl_uart.h:175

Parameters

Direction Name Description

buffer A pointer to a buffer holding the outgoing data.

length The number of bytes to send. (> 0)

fcs The FCS of the buffer to accompany the transmission.

Return

BL_UART_NO_ERROR if the operation is started successfully. BL_UART_INVALID_PARAMETER if the
length is zero. BL_UART_TX_BUSY if another send operation is currently active.

NOTE: There must be no pending transmit operation pending when this is invoked.

www.onsemi.com

78

onsemi

Secure Bootloader Guide

8.7.43 BL_UARTSendComplete

BL_UARTStatus_t BL_UARTSendComplete()

Complete the transmission of an executing send operation.

Location: bl_uart.h:188

Return

BL_UART_NO_ERROR if the operation completes successfully. BL_UART_TX_IDLE if there is no pending
receive operation. BL_UART_TX_TIMEOUT if the send operation timed out.

NOTE: There must be an existing transmit operation pending.

NOTE: This is a blocking operation.

8.7.44 BL_UARTSend

BL_UARTStatus_t BL_UARTSend(uint8_t * buffer, size_t length, BL_FCS_t * fcs)

Send a fixed length data buffer using the UART.

Location: bl_uart.h:205

Parameters

Direction Name Description

buffer A pointer to a buffer holding the outgoing data.

length The number of bytes to send. (> 0)

fcs The FCS of the buffer to accompany the transmission.

Return

www.onsemi.com

79

onsemi

Secure Bootloader Guide

BL_UART_NO_ERROR if the operation is started successfully. BL_UART_INVALID_PARAMETER if the
length is zero. BL_UART_TX_BUSY if another send operation is currently active. BL_UART_TX_TIMEOUT
if the send operation timed out.

NOTE: There must be no pending transmit operation pending when this is invoked.

NOTE: This is a blocking operation.

8.7.45 BL_UpdateInitialize

void BL_UpdateInitialize()

Initialize the firmware update component.

Location: bl_update.h:60

8.7.46 BL_UpdateRequested

bool BL_UpdateRequested()

Check if a firmware update is being requested.

Location: bl_update.h:66

Return

True if the update pin has been pulled low. False otherwise.

8.7.47 BL_UpdateProcessPendingImages

void BL_UpdateProcessPendingImages()

This will check for any pending images which have previously been downloaded and if any are found will copy them to
the appropriate location for execution.

Location: bl_update.h:73

www.onsemi.com

80

onsemi

Secure Bootloader Guide

8.7.48 BL_ImageSelectAndStartApplication

void BL_ImageSelectAndStartApplication()

This will attempt to start any images which are available.

This will first try to validate and if necessary authenticate the primary image. If this is successful it will then perform
similar validation and authentication on the secondary image. If both the primary and secondary image validation is suc-
cessful then it will start the secondary image. If only the primary image is valid then it will be started instead. If both
the primary and secondary image fail the validation steps then no image will be started and the function will return to
the caller and the bootloader will enter the loading state.

Location: bl_update.h:90

8.7.49 BL_VersionsGetInformation

void BL_VersionsGetInformation(BL_BootAppVersion_t * version, uint32_t address)

Get the version information from a suitable application.

Location: bl_versions.h:101

Parameters

Direction Name Description

version The structure into which the information should be copied.

address The base address of the application under consideration.

8.7.50 BL_VersionsGetHello

void BL_VersionsGetHello(BL_HelloResponse_t * response)

Fetch the hello response from the bootloader.

Location: bl_versions.h:108

www.onsemi.com

81

group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___boot_app_version__t
group___s_e_c_u_r_e___b_o_o_tg_struct.html#struct_b_l___hello_response__t

onsemi

Secure Bootloader Guide

Parameters

Direction Name Description

response The structure into which the hello response should be
copied.

8.7.51 BL_WatchdogInitialize

void BL_WatchdogInitialize()

Initialise the watchdog module.

Location: bl_watchdog.h:64

8.7.52 BL_WatchdogSetHoldTime

void BL_WatchdogSetHoldTime(uint32_t seconds)

Set the watchdog hold off time to seconds.

Location: bl_watchdog.h:76

Parameters

Direction Name Description

seconds The number of seconds to allow before the watchdog bites.

NOTE: This allows the watchdog interrupt to fire but refreshes the watchdog itself until the requested
number of seconds has elapsed. This is a crude mechanism to prevent long running calculations
such as RSA key generation from causing a system reset.

8.7.53 WATCHDOG_IRQHandler

void WATCHDOG_IRQHandler()

Define an interrupt handler for the watchdog interrupt.

www.onsemi.com

82

onsemi

Secure Bootloader Guide

Location: bl_watchdog.h:82

www.onsemi.com

83

onsemi

Secure Bootloader Guide

Windows is a registered trademark of Microsoft Corporation. Arm, Cortex, Keil, and uVision are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All
other brand names and product names appearing in this document are trademarks of their respective holders.

IAR EmbeddedWorkbench is a registered trademark of IAR Systems AB.

onsemi and the onsemi logo are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi owns the
rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at
www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale
in any manner.

Copyright 2023 Semiconductor Components Industries, LLC (“onsemi”). All rights reserved. Unless agreed to differently in a separate onsemi license agreement, onsemi is providing
this “Technology” (e.g. reference design kit, development product, prototype, sample, any other non-production product, software, design-IP, evaluation board, etc.) “AS IS” and does
not assume any liability arising from its use; nor does onsemi convey any license to its or any third party’s intellectual property rights. This Technology is provided only to assist users in
evaluation of the Technology and the recipient assumes all liability and risk associated with its use, including, but not limited to, compliance with all regulatory standards. onsemi
reserves the right to make changes without further notice to any of the Technology.

The Technology is not a finished product and is as such not available for sale to consumers. Unless agreed otherwise in a separate agreement, the Technology is only intended for
research, development, demonstration and evaluation purposes and should only be used in laboratory or development areas by persons with technical training and familiarity with the
risks associated with handling electrical/mechanical components, systems and subsystems. The user assumes full responsibility/liability for proper and safe handling. Any other use,
resale or redistribution for any other purpose is strictly prohibited.

The Technology is not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification
in a foreign jurisdiction, or any devices intended for implantation in the human body. Should you purchase or use the Technology for any such unintended or unauthorized application,
you shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was
negligent regarding the design or manufacture of the board.

The Technology does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or
UL, and may not meet the technical requirements of these or other related directives.

THE TECHNOLOGY IS NOTWARRANTED AND PROVIDED ON AN “AS IS” BASIS ONLY. ANYWARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT
LIMITED TO THEWARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE HEREBY EXPRESSLY DISCLAIMED.

TO THE FULLEST EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL ONSEMI BE LIABLE TO CUSTOMEROR ANY THIRD PARTY. IN NO EVENT SHALL
ONSEMI BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY NATUREWHATSOEVER (INCLUDING, BUT NOT LIMITED TO, LOSS OR
DISGORGEMENT OF PROFITS, LOSS OF USE AND LOSS OF GOODWILL), REGARDLESS OFWHETHER ONSEMI HAS BEEN GIVEN NOTICE OF ANY SUCH ALLEGED
DAMAGES, AND REGARDLESS OFWHETHER SUCH ALLEGED DAMAGES ARE SOUGHT UNDER CONTRACT, TORT OROTHER THEORIES OF LAW.

Do not use this Technology unless you have carefully read and agree to these limited terms and conditions. By using this Technology, you expressly agree to the limited terms and
conditions. All source code is onsemi proprietary and confidential information.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for onsemi

19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free

USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support:

800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical

Support:Phone: 421 33 790 2910

onsemi Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local

Sales Representative

M-20892-003

www.onsemi.com

84

	Secure Bootloader Guide
	Table of Contents
	1. Introduction
	1.1 Summary
	1.2 Document Conventions
	1.3 Further Reading

	2. Overview
	2.1 Common Features
	2.2 RSL15 Secure Bootloader Usage Options
	2.2.1 Functionality Access Options
	2.2.2 Configuration

	2.3 Memory Partitioning Overview

	3. PSA Compliance Background
	3.1 Overview of PSA Compliance

	4. Basic Bootloader
	4.1 General Usage

	5. Secure Bootloader
	5.1 Booting a Secure Application
	5.2 Updating a Secure Application
	5.3 Updating the Secure Bootloader Itself
	5.4 Support for Immutable Portions in the Secure Bootloader

	6. Secure Storage
	6.1 Secure Storage Area
	6.2 Content to be Stored in Secure Storage
	6.3 API
	6.4 Basic Operation

	7. Attestation
	7.1 Overview and Background
	7.2 Attestation Interface
	7.2.1 Key Injection
	7.2.2 Get Token
	7.2.3 Get Token Size
	7.2.4 Key Injection Process

	7.3 Attestation Token
	7.3.1 Format of Token
	7.3.2 EAT Additional Details
	7.3.3 Attestation Token Request

	8. Secure Bootloader Sample Reference
	8.1 Summary
	8.2 Detailed Description
	8.3 Secure Bootloader Sample Reference Typedef Documentation
	8.3.1 BL_FCS_t
	8.3.2 BL_BootAppId_t

	8.4 Secure Bootloader Sample Reference Variable Documentation
	8.4.1 BL_ImageWorkspace

	8.5 Secure Bootloader Sample Reference Enumeration Type Documentation
	8.5.1 BL_UpdateType_t
	8.5.2 BL_ConfigStatus_t
	8.5.3 BL_FCSStatus_t
	8.5.4 BL_FCSAlgorithm_t
	8.5.5 BL_ImageType_t
	8.5.6 BL_ImageStatus_t
	8.5.7 BL_LoaderCommand_t
	8.5.8 BL_LoaderStatus_t
	8.5.9 BL_LoaderCertType_t
	8.5.10 BL_LoaderStatusType_t
	8.5.11 BL_UARTStatus_t

	8.6 Secure Bootloader Sample Reference Macro Definition Documentation
	8.6.1 VT_OFFSET_STACK_POINTER
	8.6.2 VT_OFFSET_RESET_VECTOR
	8.6.3 VT_OFFSET_VERSION_INFO
	8.6.4 VT_OFFSET_IMAGE_SIZE
	8.6.5 VT_OFFSET_CERT_SIZE
	8.6.6 BL_CONFIGURATION_BASE
	8.6.7 BL_CONFIGURATION_WORDS
	8.6.8 FLASH_BOND_INFO_SIZE
	8.6.9 BL_CODE_SECTOR_SIZE
	8.6.10 BL_DATA_SECTOR_SIZE
	8.6.11 BL_FLASH_RESERVED_SIZE
	8.6.12 BL_SECURE_STORAGE_BASE
	8.6.13 BL_SECURE_STORAGE_SIZE
	8.6.14 BL_SECURE_STORAGE_TOP
	8.6.15 BL_BOOTLOADER_BASE
	8.6.16 BL_BOOTLOADER_KB
	8.6.17 BL_BOOTLOADER_SIZE
	8.6.18 BL_FLASH_CODE_BASE
	8.6.19 BL_FLASH_DATA_BASE
	8.6.20 BL_FLASH_CODE_TOP
	8.6.21 BL_FLASH_DATA_TOP
	8.6.22 BL_FLASH_CODE_SIZE
	8.6.23 BL_FLASH_DATA_SIZE
	8.6.24 BL_APPLICATION_BASE
	8.6.25 BL_AVAILABLE_SIZE
	8.6.26 BL_APPLICATION_SIZE
	8.6.27 BL_DOWNLOAD_BASE
	8.6.28 BL_DOWNLOAD_SIZE
	8.6.29 BL_OPT_FEATURE_ENABLED
	8.6.30 BL_OPT_FEATURE_DISABLED
	8.6.31 BL_OPT_FEATURE_BOOTLOADER
	8.6.32 BL_OPT_FEATURE_SECURE_BOOTLOADER
	8.6.33 BL_OPT_FEATURE_SECURE_STORAGE
	8.6.34 BL_OPT_FEATURE_ATTESTATION
	8.6.35 BL_OPT_ATTEST_KEY_AES
	8.6.36 BL_OPT_ATTEST_KEY_RSA
	8.6.37 BL_OPT_ATTEST_KEY_ECC
	8.6.38 BL_OPT_SECURE_FILE_SYSTEM_RESET
	8.6.39 DEBUG_CATCH_GPIO
	8.6.40 UART_CLK
	8.6.41 SENSOR_CLK
	8.6.42 USER_CLK
	8.6.43 VCC_BUCK_ENABLE
	8.6.44 BL_TICKER_TIME_MS
	8.6.45 BL_DEBUG
	8.6.46 BL_TRACE
	8.6.47 BL_WARNING
	8.6.48 BL_ERROR
	8.6.49 BL_UART_RX_TIMEOUT_MS
	8.6.50 BL_WATCHDOG_FEED_ME_MS
	8.6.51 BL_UART_TX_TIMEOUT_MS
	8.6.52 BL_UART_MAX_RX_LENGTH
	8.6.53 BL_UART_MAX_TX_LENGTH
	8.6.54 BL_BAUD_RATE
	8.6.55 BL_UART_DELAY_CYCLES
	8.6.56 UPDATE_GPIO
	8.6.57 MIN
	8.6.58 MAX
	8.6.59 BITS2BYTES
	8.6.60 BITS2HALFWORDS
	8.6.61 BL_VERSION_ENCODE
	8.6.62 BL_VERSION_DECODE
	8.6.63 BL_BOOT_VERSION
	8.6.64 BL_WATCHDOG_MAX_HOLD_OFF_SECONDS

	8.7 Secure Bootloader Sample Reference Function Documentation
	8.7.1 BL_CheckRemapAddressSpace
	8.7.2 BL_CheckGetApplicationSize
	8.7.3 BL_CheckRelocatedApplicationSize
	8.7.4 BL_CheckIfImageUpdateAvailable
	8.7.5 BL_CheckIfSecureImageUpdateAvailable
	8.7.6 BL_CheckFindSecondaryImageLocation
	8.7.7 BL_ConfigIsValid
	8.7.8 BL_ConfigCertificateAddress
	8.7.9 BL_FCSInitialize
	8.7.10 BL_FCSQuery
	8.7.11 BL_FCSAuthenticationRequired
	8.7.12 BL_FCSSelect
	8.7.13 BL_FCSCheck
	8.7.14 BL_FCSCalculate
	8.7.15 BL_FCSAccumulateCRC
	8.7.16 BL_FlashInitialize
	8.7.17 BL_FlashSaveSector
	8.7.18 BL_ImageInitialize
	8.7.19 BL_ImageAddress
	8.7.20 BL_ImageAddressRange
	8.7.21 BL_ImageCopyMemoryRange
	8.7.22 BL_ImageSaveBlock
	8.7.23 BL_ImageVerify
	8.7.24 BL_ImageAuthenticate
	8.7.25 BL_ImageAuthenticateCurrent
	8.7.26 BL_ImageIsValid
	8.7.27 BL_ImageSaveAddress
	8.7.28 BL_ImageStartApplication
	8.7.29 BL_LoaderPerformFirmwareLoad
	8.7.30 BL_LoaderCertificateAddress
	8.7.31 BL_RecoveryInitialize
	8.7.32 BL_TargetInitialize
	8.7.33 BL_TargetReset
	8.7.34 BL_TickerInitialize
	8.7.35 BL_TickerTime
	8.7.36 SysTick_Handler
	8.7.37 BL_TraceInitialize
	8.7.38 BL_UARTInitialize
	8.7.39 BL_UARTReceiveAsync
	8.7.40 BL_UARTReceiveComplete
	8.7.41 BL_UARTReceive
	8.7.42 BL_UARTSendAsync
	8.7.43 BL_UARTSendComplete
	8.7.44 BL_UARTSend
	8.7.45 BL_UpdateInitialize
	8.7.46 BL_UpdateRequested
	8.7.47 BL_UpdateProcessPendingImages
	8.7.48 BL_ImageSelectAndStartApplication
	8.7.49 BL_VersionsGetInformation
	8.7.50 BL_VersionsGetHello
	8.7.51 BL_WatchdogInitialize
	8.7.52 BL_WatchdogSetHoldTime
	8.7.53 WATCHDOG_IRQHandler

